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Introduction

Our final topic is multivariate survival analysis, where we have
multiple observable outcomes. Areas of application include

Series of events, such as birth intervals or spells of
unemployment, where each individual can experience one or
more events in succession

Kindred lifetimes, such as survival of husband and wife, or
survival of children in the same family, where we have related
individuals experiencing events

Competing risks, where each individual can experience one of
several types of events, although the models here are more of
conceptual than practical interest

Event history models, involving transitions among different
states, for example from single to cohabiting or married, from
cohabiting to married or separated, and so on.

We provide some basic definitions and discuss shared frailty models.
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Bivariate Survival

We start with two survival times T1 and T2. The joint survival is

S12(t1, t2) = Pr{T1 ≥ t1,T2 ≥ t2}

Here S12(t, t) is the probability that neither unit has failed by t.

The conditional survival comes in two variants

S1|2(t1|T2=t2) = Pr{T1 ≥ t1|T2 = t2}

which conditions on unit 2 failing at t2, and

S1|2(t1|T2≥t2) = Pr{T1 ≥ t1|T2 ≥ t2}

which conditions on unit 2 surviving to just before t2.

We also have the marginal survival functions we already know.
If T1 and T2 are independent then the joint survival is the product
of the marginals.
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Bivariate Hazards

The joint hazard function is defined as

λ12(t1, t2) = lim Pr{T1 ∈ [t1, t1+dt),T2 ∈ [t2, t2+dt)|T1 ≥ t1,T2 ≥ t2}/dt2

the instantaneous rate of failures at t1 and t2 given that the units
had survived to just before t1 and t2.

The conditional hazard also comes in two variants

λ1|2(t1|T2=t2) = lim Pr{T1 ∈ [t1, t1 + dt)|T1 ≥ t1,T2 = t2}/dt

given that unit 2 failed at t2, and

λ1|2(t1|T2≥t2) = lim Pr{T1 ∈ [t1, t1 + dt)|T1 ≥ t1,T2 ≥ t2}/dt

given that unit 2 survived to just before t2.
The two types of conditional hazard together completely determine
the joint distribution, see Cox and Oakes (1975).

Finally we have the marginal hazards we already know. If T1 and
T2 are independent the joint hazard is the sum of the marginals.
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Frailty Models

A popular approach to modeling multivariate survival is to assume
the existence of a shared random effect θ such that T1 and T2 are
independent given θ:

S12(t1, t2|θ) = S1(t1|θ)S2(t2|θ)

Typically we assume that frailty acts multiplicatively on the
conditional hazard, so that

λj(t|θ) = λ0j(t)θ and Sj(t|θ) = S0j(t)θ

for some baseline hazard and survival functions with j = 1, 2.

Usually the baseline hazard is the same for all failure times. This
makes most sense when the events are exchangeable, for example
spells of unemployment. Otherwise covariates may be used, for
example to distinguish risks for males and females.
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Frailty Distributions

A common assumption about shared frailty is that it follows a
gamma distribution. If frailty is gamma with mean one and
variance σ2 the joint survival function is

S12(t1, t2) =

(
1

1 + σ2Λ01(t1) + σ2Λ02(t2)

)1/σ2

An alternative assumption that also yields an explicit solution for
the survival function is inverse Gaussian frailty.

A third option is to use a non-parametric estimator of the frailty
distribution, which leads to a discrete mixture where θ takes values
θ1, . . . θk with probabilities π1, . . . , πk adding to one. In this case

S12(t1, t2) =
k∑

j=1

e−θj [Λ01(t1)+Λ02(t2)]πj

see Laird (1978) and Heckman and Singer (1984).
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Clayton’s Model

Clayton (1978) proposed a bivariate survival model where the two
conditional hazards for T1 given T2 = t2 and given T2 ≥ t2 are
proportional:

λ1|2(T1|T2 = t2)

λ1|2(T1|T2 ≥ t2)
= 1 + φ

In words, the risk for unit 1 at time t1 given that the other unit
failed at t2 is 1 + φ times the risk at t1 given that the other unit
survived to t2.

A remarkable result is that this model is exactly equivalent to a
multiplicative frailty model with gamma-distributed shared frailty
and σ2 = φ.

An important implication of this result is that shared frailty models
are clearly identified, as the choice of frailty distribution has
observable consequences.

It also gives a new interpretation to σ2.
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Oakes’s Interpretation

Oakes (1982) shows that φ (and thus σ2) is closely related to a
measure of ordinal association known as Kendall’s τ (tau).

Given a bivariate sample of data on (T1,T2), Kendall considers all
pairs of observations, calls the pair concordant if the rank order is
the same and discordant otherwise, and computes

τ =
concordant pairs− discordant pairs

number of pairs

Oakes extends this to censored data by focusing on pairs where the
order can be established, and shows that under gamma frailty

E (τ̂) =
φ

φ+ 2

which provides a nice justification for interpreting φ (and σ2) as a
measure of ordinal association between kindred lifetimes.
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Multivariate Extensions

These ideas extend directly to the multivariate case, please refer to
the notes for details. A few important facts:

Clayton shows that with multivariate failures and gamma frailty
the ratio of the risk for one unit when m have failed at given
durations, to the risk if all had survived to the same durations is

1 + mφ

which reduces to 1 + φ in the bivariate case, still with φ = σ2.

Oakes shows that we can interpret the ratio

φ

2 + φ

as a measure of association between any two of the m failure times.

Shared frailty models allow only for positive association between
kindred lifetimes, but cover the entire range from independence to
maximum possible positive association.
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Software Notes

Stata’s streg fits parametric proportional hazard models with
gamma or inverse Gaussian shared frailty. PWE models with
log-normal or gamma frailty can also be fit using xtpoisson. Cox
models with gamma or inverse Gaussian frailty can be fitted with
stcox, but in my experience this command is very slow.

In R the packages frailtypack and the newer parfm have
functions to fit parametric models with shared frailty. PWE models
with log-normal frailty can also be fit via the Poisson trick with
lme4. The coxph function lets you add a frailty term to a
model formula, but a better approach is Therneau’s coxme, which
includes the coxme function to fit mixed Cox survival models with
Gaussian random effects.

The computing logs illustrate shared frailty models using a PWE
model in Stata and a Cox model in R.
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Child Mortality in Guatemala

Our illustrative example uses data on child mortality in Guatemala, first

analyzed by Pebley and Stupp (1987) using a PWE model, and then by

Guo and Rodŕıguez (1992) adding gamma frailty at the family level.

The table on the right summarizes
parameter estimates. See the
computing logs for variable
definitions and other details.

The exponentiated coefficients
represent subject-specific hazard
ratios. The only change of note is
the coefficient for previous child
death, which goes from 10.3%
excess risk to 7.3% lower risk.

Clearly this variable was acting as a

proxy for unobserved family effects,

now captured by the random effect.

----------------------------------

Variable | pwe gamma

-------------+--------------------

_t |

a0 | 0.338 0.371

a1to5 | 0.025 0.027

a6to11 | 0.030 0.034

a12to23 | 0.018 0.020

a24up | 0.003 0.004

mage | 0.861 0.856

mage2 | 1.003 1.003

borde | 1.064 1.059

pdead | 1.103 0.927

p0014 | 1.714 1.774

p1523 | 0.885 0.908

p2435 | 0.772 0.796

p36up | 0.676 0.690

i011a1223 | 2.247 2.210

i011a24p | 4.934 4.960

i1223a24p | 1.076 1.077

-------------+--------------------

ln_the |

_cons | 0.214

----------------------------------
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The Variance of Frailty

The estimated variance of frailty is 0.214. This implies modest
association between the lifetimes of siblings, a rank correlation of
0.097, but translates into substantial Clayton hazard ratios.

The quartiles of the estimated
frailty distribution are 0.662,
0.930 and 1.262. Thus,
families with frailty at Q1
have 29% lower risk, and
those in Q3 have 36% higher
risk, than families at median
frailty.
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Testing significance of the variance requires care because the null
hypothesis is on a boundary of the parameter space. The statistic
can be treated as a 50:50 mix of χ2

0 and χ2
1, or conservatively as

χ2
1. Here we get 3.3, which is clearly significant.
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Observed and Unobserved Effects

It is interesting to compare the magnitude of the estimated
unobserved family effects with the relative risks corresponding to
observed characteristics of the child and mother.

The figure on the right
shows the estimated density
of the risks at birth. The
quartiles are 0.799, 0.911
and 1.070. Thus, children
in Q1 have 12.3% lower,
and those in Q3 have
17.5% higher risk than
those at the median.
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Clearly the unobserved family effects are larger than the observed
child and family effects.

See the computing logs for details of the calculations. For the plot
I scaled the hazards to have mean one.
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Subject-Specific and Population Average Probabilities

We can translate the results into a more convenient scale by
calculating subject-specific and population average probabilities. I
use preceding birth interval as an example.

These are subject-specific
probabilities of infant and
child death for a 26-year old
mother having a 2nd child,
who has not experienced a
child death before, has a
preceding birth interval of one
or three years, and her frailty
is in each quartile.
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I also show the corresponding population average probabilities.
Differences between the average mother and the population
average are modest because selection hasn’t had much time to
operate by ages one and five.
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Marginal and Joint Probabilities

The final calculation concerns the marginal and joint probabilities
of infant and child death for two children in the same family.

It doesn’t make sense to fix the mother’s age at 26 unless she has
twins, so I did the calculations for a second birth at age 26 and a
third birth at age 29. Here are the probabilities for age five

2nd 3rd Child
Child died survived All

died .0090 .0765 .0855
survived .0793 .8351 .9144

All .0883 .9116 1.000

The odds-ratio for this 2 by 2 table is 1.239, so the odds of one
child dying by age five are 23.9% higher if the other child died by
age five. (Also, the joint survival is slightly higher than the product
of the marginal probabilities.)
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Log-Normal Frailty

In the computing logs I also fit this model using log-normal frailty
via the equivalence with Poisson regression. The estimates of the
parameters are quite robust to the choice of frailty distribution.

A nice feature of log-normal frailty is that we can write the model
as

log λ(t|x , θ) = log λ0(t) + x ′β + σz

where z is standard normal and θ = eσz . This leads to interpreting
σ as just another coefficient. In our example σ̂ = 0.442, so a one
st.dev. increase in log-frailty is associated with 55.6% higher risk.

The estimated quartiles are Q1=0.742 and Q3=1.348, so these
families have 26% lower and 35% higher risk than families at the
median. The results are very similar to those under gamma frailty.

A disadvantage of log-normal frailty is the need for Gaussian
quadrature to calculate unconditional probabilities.
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