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Introduction

This week we consider survival models with a random effect
representing unobserved heterogeneity of frailty.

Topics for discussion include

o

Subject-specific hazards and survival
Population-average hazards and survival
Frailty distributions, including gamma and inverse Gaussian

The identification problem, how different individual hazards
lead to the same population hazard

The inversion formula, how to find an individual hazard
consistent with a given population hazard

Models with covariates, how unobserved heterogeneity is
confounded with non-proportionality of hazards

Next week we continue with shared frailty models.
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Subject-Specific Hazard and Survival

A popular model introduced by Vaupel et al. (1979) assumes that
the hazard for an individual at time t is

A(t]6) = Ao(t)0

where \o(t) is a baseline individual hazard and 6 is a random effect
representing the individual's frailty.

This is just like a proportional hazards model, but the relative risk
0 is not observed. We take E(f) = 1 so the baseline applies to the
average person.

The survival function for an individual has the same form as in PH
models
S(t]6) = So(t)’

where So(t) is the baseline survival.

These functions represent the subject-specific or conditional hazard

and survival.
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Population-Average Hazard and Survival

To obtain the unconditional survival we need to integrate out the
unobserved random effect. If frailty has density g(6) then

S())= | s(e)e(o)o
0
This is often called the population-average survival function, and
has the great advantage of being observable.

To obtain the unconditional hazard we take negative logs to get a
cumulative hazard and then take derivatives. This leads to the
remarkable result

A(t) = Xo(B)E(O|T > t)

The population-average hazard is the baseline hazard times the
expected frailty of survivors to t.

Please see the notes for the proof.
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Gamma Frailty

To proceed further we need to specify the distribution of frailty.

A convenient choice is the 15
gamma distribution SN

g0) =0t ) v

which has mean E(0) = o/ | S~
and var(f) = o/ 2. ks ; s

To get a mean of one we take a = 3 = 1/02.

The unconditional survival and hazard are then

5(1.') _ 1 )\o(t)

Aroong@) ™ 2O = 15500

These results let us go from individual to population hazards. See
the notes for the proof and a connection with Laplace transforms.
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Gamma Mixtures of Exponentials

Example. If the hazard is constant for each individual and frailty is
gamma then the population-average hazard is

A
Alt) = 1402\t

and approaches zero as t — co. An example with ¢ = 1 follows.

~d

SS,

hazard
/

Selection is faster at higher risk and the observed hazards are no
longer proportional.
/16
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Expected Frailty of Survivors

When frailty is gamma with mean one and variance ¢ the
distribution of frailty among survivors to t is also gamma, with

o2

E(O|T > t) = [1+ 02 (1))

1
—_— d 0T >t
T+ 02N (1) and var(6| ) =

Verify that the mean follows the general result given earlier.
Using this result we can plot the evolution of frailty over time

15

——
e —
ga_
=25
T T
0 1 2

going from (1,0.5) to (0.45,0.10) at 25 when )¢ = 1.
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Inverse Gaussian Frailty

Another distribution that leads to an explicit solution is the inverse
Gaussian or first passage time in Brownian motion.

The density can be written as

g(0) = || L6/ 30

where p is the mean and 1/~
the variance. ; ;i ; 3

q

9@

5

Hougaard (1984) showed that the expected frailty of survivors
under inverse Gaussian heterogeneity is

1
[+ 2020g(1)]1/2

E(|T > t)

The population hazard follows directly from that. Please refer to
the notes for the population survival.
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Frailty Families

You might have noticed a certain resemblance between the
expected frailty of survivors under these two models. Write
1

EG|T > t):m

and k = 1 gives the mean under gamma frailty while k = 1/2 gives
the mean under inverse Gaussian frailty. Is this true for other k7

Hougaard (1986) proved that this formula is valid for any k < 1,
yielding a family based on stable laws including inverse Gaussian.

Aalen (1988) extended it to k > 1 assuming that frailty has a
compound Poisson distribution (sum of a Poisson-distributed
number of gammas) which includes a group with zero frailty.

Most applications, however, consider only gamma and inverse
Gaussian frailty.
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The Inversion Formula for Gamma

Less well-known is the fact that we can invert these formulas to go
back from the population to the individual hazard.

Under gamma frailty with population-average hazard A(t) the
subject-specific hazard has baseline

a result easily verified. For the proof please see the notes.

Example. Suppose the observed population hazard is constant, so
A(t) = A. If frailty is gamma with variance o the individual
hazard has baseline

Xo(t) = Ae” M

which we recognize as a Gompertz hazard.
Thus, an exponential distribution can be characterized as a gamma
mixture of Gompertz distributions.
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Some Applications of the Inversion Formula

These results have many applications. For example

@ In the U.S. blacks have higher mortality than whites at most
ages, but the relationship is reversed after age 70 or so. Two
competing theories are selection and bad data. The inversion
formula allows determining the extent to which selection could
explain the cross-over.

@ Many studies find that the effect of education on mortality
becomes weaker at older ages, even though some theories
would lead us to expect the opposite. Zajacova et al. (2009)
use the inversion formula to show how frailty can bias the
effect downwards and produce a declining population hazard
ratio even if the subject-specific effect increases with age.

In both cases you start with observed hazards for two or more
groups and then use the inversion formula to find compatible
subject-specific hazards.
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The Inversion Formula for Inverse Gaussian

The inversion formula is also tractable for inverse Gaussian
heterogeneity with variance o2. If the population-average hazard is
A(t) the subject-specific hazard has baseline

Xo(t) = A(t)(1 + o®A(t))

Example: Let's use this result to write the exponential distribution
as an inverse Gaussian mixture of something else. If A\(t) = A then

Xo(t) = A+ o2 X\%t
a hazard that rises linearly with time.

Thus, the exponential distribution can also be characterized as an
inverse Gaussian mixture of linear hazards.
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The Identification Problem
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You may suspect by now that we have a serious identification
problem. When we see a constant hazard at the population level
the individual could have

@ a constant hazard, if the population is homogeneous

@ a linearly increasing hazard if the population has inverse
Gaussian heterogeneity

© an exponentially increasing hazard if the population has
gamma heterogeneity

Moreover, options 2 and 3 could have any variance o2 > 0!

These results extend to models with covariates. Why do we care?
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The Omitted Variable Bias
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Hazards are

An important consequence of unobserved heterogeneity is that omitting a
predictor in a hazard model introduces a bias even if the omitted variable
is uncorrelated with other predictors. Even in randomized experiments!

Suppose x; and x; are uncorrelated indicator variables with 1/4 in each
combined category. Survival is exponential. The baseline hazard is one,
x; doubles it and x; triples it. But x; is not observed. What do we see?

<

X2
X1 0 1 1
0 1 3 H
1 2 6 )

time

The population hazard in each category of x; is not constant, and the
effect of x; is no longer proportional.
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Correcting for Unobserved Heterogeneity
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In the hope of “correcting” this bias some analysts add a random
frailty effect to regression models, often by assuming a parametric
hazard and a distribution for the random effect.

Heckman and Singer (1984) found that parameter estimates could
be sensitive to assumptions about the distribution of frailty, and
proposed a discrete mixture model, combining a non-parametric
maximum likelihood (NPML) estimate of the frailty distribution
with a parametric baseline hazard.

Trussell and Richards (1985) found that estimates obtained using
the Heckman-Singer procedure were also very sensitive to the
parametric form assumed for the hazard, and note that often we
lack refined theories on which to base the choice.

Unfortunately we can't estimate both the baseline hazard and the
mixing distribution non-parametrically. Theory and experience
suggest that the choice of hazard is more critical.
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Identification Problem with Covariates

Suppose you find that an exponential model fits the data well:
A(t]x) = e* X8

A referee complains that you haven't corrected for unobserved
heterogeneity. You add gamma frailty and come up with the model

A(t|x, ) = e+ B+o7te™?

an accelerated failure time model with a Gompertz baseline.
But you could have added inverse Gaussian frailty to obtain

A(t|x, 0) = 0e® TP (1 4 g2 tX'Bt)

a non-proportional hazards model with a linear baseline.
These models are identical. Which one is correct? What's 027

Adding a random effect greatly extends the range of Cox models.
Just don’t think you got the one true hazard to rule them all.
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