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Introduction

We now turn to multiple causes of failure in the framework of
competing risks models. IUD users, for example, could become
pregnant, expel the device, or request its removal for personal or
medical reasons.

Competing risks pose three main analytic questions of interest

1 How covariates relate to the risk of specific causes of failure,
such as IUD expulsion

2 Whether people at high risk of one type of failure are also at
high risk of another, such as accidental pregnancy

3 What would survival look like if a cause of failure could be
removed, for example if we could eliminate expulsion

It turns out we can answer question 1, but question 2 is essentially
intractable with single failures, and 3 can only be answered under
strong and wholly untestable assumptions.
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Cause-Specific Risks

Let T denote survival time and J represent the type of failure,
which can be one of 1, 2, . . . ,m.

We define a cause-specific hazard rate as

λj(t) = lim
dt↓0

Pr{T ∈ [t, t + dt), J = j |T ≥ t}
dt

the instantaneous conditional risk of failing at time t due to cause
j among those surviving to t.

With mutually exclusive and collectively exhaustive causes the
overall hazard is the sum of the cause-specific risks

λ(t) =
m∑
j=1

λj(t)

This result follows directly from the law of total probability and
requires no additional assumptions.
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Cumulative Hazard and Survival

We can also define a cause-specific cumulative hazard

Λj(t) =

∫ t

0
λj(u)du

which obviously adds up to the total cumulative hazard Λ(t).

It may also seem natural to define the function

Sj(t) = e−Λj (t)

but Sj(t) does not have a survival function interpretation in a
competing risks framework without strong additional assumptions.

Obviously
∏

Sj(t) = S(t), the total survival. This suggests
interpreting Sj(t) as a survival function when the causes are
independent, but as we’ll see this assumption is not testable.

Demographers call Sj(t) the associated single-decrement life table.
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Cause-Specific Densities

Finally, we consider a cause-specific density function which
combines overall survival with a cause specific hazard:

fj(t) = lim
dt↓0

Pr{T ∈ [t, t + dt), J = j}
dt

= λj(t)S(t)

the unconditional rate of type-j failures at time t. By the law of
total probability these densities add up to the total density f (t)

In order to fail due to cause j at time t one must survive all causes
up to time t. That’s why we multiply the cause-specific hazard
λj(t) by the overall survival S(t).

Our notation so far has omitted covariates for simplicity, but
extension to covariates is straightforward. With time-varying
covariates, however, a trajectory must be specified to obtain the
cumulative hazard or survival.
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The Incidence Function

Another quantity of interest is the cumulative incidence function
(CIF), defined as the integral of the density

Ij(t) = Pr{T ≤ t, J = j} =

∫ t

0
fj(u)du

In words, the probability of having failed due to cause j by time t.

A nice feature of the cause-specific CIFs is that they add up to the
complement of the survival function. Specifically

1− S(t) =
m∑
j=1

Ij(t)

which provides a decomposition of failures up to time t by cause.

The CIF is preferred to Sj(t) because it is observable, while the
latter “has no simple probability interpretation without strong
additional assumptions” (K-P, 2002, p. 252.)
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Non-Parametric Estimation

Let ti denote the failure or censoring time for observation i and let
dij = 1 if individual i fails due to cause j at time ti . A censored
individual has dij = 0 for all j .

The Kaplan-Meier estimate of overall survival is obtained as usual

Ŝ(t) =
∏
i :tj≤t

(1− di
ni

)

where di =
∑

j dij is the total number of failures at ti and ni is the
number of individuals at risk just before ti .

The Nelson-Aalen estimate of the cumulative hazard of failure due
to cause j is

Λ̂j(t) =
∑
i :ti≤t

dij
ni

a sum of cause-specific failure probabilities. This estimate is easily
obtained by censoring failures due to any cause other than j
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Estimating the CIF

What you should not do is calculate a Kaplan-Meier estimate
where you censor failures due to all causes other than j . You’ll get
an estimate, but it is not in general a survival probability.

What you can do is estimate the cumulative incidence function

Îj(t) =
∑
i :ti≤t

Ŝ(ti )
dij
ni

using KM to estimate the probability of surviving to ti and dij/ni
for the conditional probability of failure due to cause j at time ti .

Pointwise standard errors of the CIF estimate can be obtained
using the delta method, but the derivation is more complicated
than in the case of Greenwood’s formula.
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Supreme Court Justices

In the computing logs we study how long Supreme Court Justices
serve, treating death and retirement as competing risks. The nine
current justices are censored at their current (updated) length of
service.

The graphs below show the Kaplan-Meier survival curve and the
cumulative incidence functions for death and retirement
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The median length of service is 16.5 years. The CIF plots have
similar shapes, and indicate that about half the justices leave by
death and the other half retire.
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Supreme Court Justices (continued)

I like to stack these plots, taking advantage of the fact that
1− S(t) =

∑
j Ij(t), so we can see at a glance the status of the

justices by the years since they were appointed.
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We now turn to regression models to see how these probabilities
vary by age and period.
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Cox Models for Competing Risks

A natural extension of proportional hazard models to competing
risks writes the hazard of type-j failures as

λj(t|x) = λ0je
x ′βj

where λ0j is the baseline hazard and ex
′βj the relative risk, both for

type-j failures.

The baseline hazard may be specified parametrically, for example
using a Weibull or Gompertz hazard, or may be left unspecified, as
we did in Cox models, which focus on the relative risks.

The most remarkable result is that these models may be fitted
using the techniques we already know! All you do is treat failures
of cause j as events and failures due to any other cause as
censored observations.

The next two slides justify this remark.
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Parametric Likelihoods for Competing Risks

The parametric likelihood for failures of type j in the presence of
all other causes has individual contributions given by

dij log λj(ti |x)− Λ(ti |x)

where I assumed for simplicity that observation starts at zero.

The cumulative hazard for all causes is a sum of cause-specific
hazard, so we can write

dij log λj(ti |x)− Λj(ti |x)−
∑
k 6=j

Λk(ti |x)

If the hazards for the other causes involve different parameters they
can be ignored. What’s left is exactly the parametric likelihood we
would obtain by censoring failures due to causes other than j .

The cause-specific hazards can then be used to estimate overall
survival and cause-specific incidence functions.
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Partial Likelihood for Competing Risks

The construction of a partial likelihood follows the same steps as
before. We condition on the times at which we observe failures of
type j and calculate the conditional probability of observing each
failure given the risk set at that time. With no ties this is

λ0j(ti )e
x ′i βj∑

k∈Ri
λ0j(ti )e

x ′kβj
=

ex
′
i βj∑

k∈Ri
ex

′
kβj

Once again the baseline hazard cancels out and we get an
expression that depends only on βj . Moreover, this is exactly the
same partial likelihood we would get by treating failures due to
other causes as censored observations.

The hazards in the model reflect risks of failures of one type in the
presence of all the other risks, so no assumption of independence is
required. It is only if you want to turn them into counterfactual
survival probabilities that you need a strong additional assumption.
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Cox Models for the Supreme Court

In the computing logs I fit Cox models to estimate age and period
effects on Supreme Court tenure, using simple log-linear
specifications. Here’s a summary of hazard ratios for each cause.

Predictor All Death Retire

Age 1.084 1.071 1.106
Year 0.994 0.989 0.999

The risk of leaving the court is 8% higher for every year of age
and about half a percent lower per calendar year

The risk of death is about 7% higher per year of age and has
declined just over one percent per calendar year

The risk of retirement is about 10% higher per year of age
and shows essentially no trend by year of appointment

Can we turn these estimates into meaningful probabilities? Yes!
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Incidence Functions from Cox Regression

In the computing logs I use the hazards of death and retirement to
estimate cumulative incidences of death and retirement by tenure.
The figure below shows the CIF of death for justices appointed at
age 55 in 1950 and 2000.
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The probability of dying while serving in the court has declined
from 32.8% to 22.6% over the last 50 years, largely as a result of
declines in mortality with no trend in retirement.
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The Fine-Gray Model

Fine and Gray (1999) proposed a competing risks model that
focuses on the incidence function for events of each type.

Let Ij(t|x) denote the incidence function for failures of type j ,
defined as

Ij(t|x) = Pr{T ≤ t, J = j |x}
the probability of a failure of type j by time t given x .

The complement or probability of not failing due to that cause can
be treated formally as a survival function, with hazard

λ̄j(t|x) = − d

dt
log(1− Ij(t|x)) =

fj(t)

1− Ij(t)

We follow Fine-Gray in calling this a sub-hazard for cause j , not to
be confused with the cause-specific hazard λj(t|x).
This hazard is a bit weird (the authors say “un-natural”) because
the denominator reflects all those alive at t or long since dead of
other causes.
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The Fine-Gray Model (continued)

They then propose a proportional hazards model for the sub-hazard
for type j , writing

λ̄j(t|x) = λ̄0j(t)ex
′βj

where λ̄0j(t) is a baseline sub-hazard and ex
′βj a relative risk for

events of type j .

The model implies that the incidence function itself follows a glm
with complementary log-log link

log(− log(1− Ij(t|x))) = log(− log(1− Ij0(t))) + x ′βj

where Ij0(t) is a baseline incidence function for type-j failures.

In the end Fine and Gray argue that their formulation is just a
convenient way to model the incidence function and I agree.
Because the transformation is monotonic, a positive coefficient
means higher CIF, but ascertaining how much higher requires
additional calculations.
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The Fine-Gray Results for Supreme Court

In the computing logs I fit the Fine-Gray model to the Supreme
Court data, treating the risk of death and retirement as competing
risks.

The table below shows the estimated age and year effects on the
sub-hazard ratio (SHR) of death. I show exponentiated coefficients
and a Wald test.

Predictor SHR z

Age 1.0074 0.42
Year 0.9916 -3.62

The cumulative incidence of death does not vary with age at
appointment beyond what could be expected by chance, but it has
declined with year of appointment with a significant linear trend.

To understand the magnitude of these effects we need to translate
the sub-hazard ratios into something easier to understand, namely
predicted cumulative incidence.
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The Fine-Gray CIF for Supreme Court

In the computing logs I show how to obtain predicted CIF curves
“by hand”, so you can see exactly how it is done.

Here are the estimated CIF for death for justices appointed at age
55 in 1950 and 2000
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We estimate that the probability of dying in the court for justices
appointed at age 55 has declined from 31.6% to 22.0% over the
last 50 years. The results are very similar to the Cox estimates,
and coincide in estimating a decline of ten percentage points in 50
years.
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The Identification Problem

A useful framework for understanding competing risks introduces
latent survival times T1,T2, . . . ,Tm representing the times at
which failures of each type would occur, with joint distribution

SM(t1, . . . , tm) = Pr{T1 > t1, . . . ,Tm > tm}
The problem is that we only observe the shortest of these and its
type: T = min{T1, . . . ,Tm} and J : T = Tj .

To be alive at t all potential failure times have to exceed t, so the
distribution of the observed survival time is

S(t) = SM(t, t, . . . , t)

Taking logs and partial derivatives we obtain the cause-specific
hazards

λj(t) =
∂

∂tj
log SM(t, t, . . . , t)

These two functions can be identified from single-failure data, but
the joint survival function cannot.
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The Marginal Distributions

The marginal distribution of latent time Tj is given by

S∗j (t) = Pr{Tj > t} = SM(0, . . . , 0, t, 0, . . . , 0)

and represents how long one would live if only cause j operated.

The hazard underlying this survival function is

λ∗j (t) = − d

dt
log S∗j (t) = − ∂

∂t
log SM(0, . . . , 0, t, 0, . . . , 0)

and represents the risk of failure if j was the only cause operating.

These functions are not identified. But if T1,T2, . . . ,Tm are
independent then

S∗j (t) = Sj(t) and λ∗j (t) = λj(t)

The assumption of independence, however, cannot be verified!
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Illustrating the Identification Problem

In the notes I provide an analytic example involving two bivariate survival
functions which produce the same observable consequences, yet the
latent times are independent in one and correlated in the other.

An alternative approach uses simulation to illustrate the problem:

Generate a sample of size 5000 from a bivariate standard log-normal
distribution with correlation ρ = 0.5. (The underlying normals have
means zero and s.d.’s one.) Let’s call these variables t1 and t2.

Set the overall survival time to t = min(t1, t2). Censoring is
optional. Verify that the Kaplan-Meier estimate tracks S(t, t).

Compute a Kaplan-Meier estimate treating failures due to cause 2
as censored. Verify that this differs from the Kaplan-Meier estimate
based on t1, which tracks S(t, 0). Unfortunately, t1 is not observed.

Hint: To generate bivariate normal r.v.’s with correlation ρ make

Y1 ∼ N(0, 1) and Y2|y1 ∼ N(ρy1, 1− ρ2).
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