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Baseline Cumulative Hazard

We can also define an estimate of the baseline cumulative hazard
that extends the Nelson-Aalen estimate.

This is in fact easier to derive because it simply equates the
observed and expected failures at each distinct failure time, yielding

Λ̂0(t) =
∑
i :ti≤t

di∑
j∈Ri

ex
′
j β̂

where the sum in the denominator is over the risk set at ti .

If there are no covariates this estimator reduces to the ordinary
Nelson-Aalen, just like the baseline survival reduces to
Kaplan-Meier.

The hazard itself can be estimated by differencing the cumulative
hazard, but is very ”spiky” and usually requires smoothing.
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The Log-log Plot

A simpler way to check proportionality of hazards with two or more
groups is to plot − log(− log Ŝ(t)) versus log t using separate
Kaplan-Meier estimates.
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If the assumption is tenable the lines should be parallel, as is
clearly the case for the Gehan data.

3 / 30 Germán Rodŕıguez Pop 509



Interactions With Time

Another way to check proportionality of hazards is to add
interactions with time. In his original paper Cox allows the
treatment effect to vary linearly with time, effectively fitting the
model

λ(t|x) = λ0(t)eβx+γxt

The log of the hazard ratio is β at time zero and increases γ per
unit of time.

The hazard ratio itself is eβ at the origin and is multiplied by eγ

for each unit of time.

A test of H0 : γ = 0 using a likelihood ratio, Wald, or score
statistic checks proportionality of hazards against a linear trend in
the log-hazard over time.
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Software Notes

In order to include interactions with time in R we need to split the
data using the powerful survSplit() function. In the computing
logs I show how to split the Gehan data at each failure point and
then add an interaction with time.

In Stata we can do the same thing with stsplit, which has the
option at(failures) to split at each failure time. However,
stcox can also fit time interactions without splitting the data: the
option tvc defines a variable to be interacted with time, and texp

defines the expression to be used, typically time itself.

Either way, we find that the estimated hazard ratio is 4.86 at
remission and declines 0.1% per week. The trend is not significant,
so we have no evidence against the proportional hazards
assumption.
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Time Expressions: Indicators

Another way to test for interactions is to allow different effects of a
covariate before and after a set time, say 10 weeks.

In the computing logs I do this in R and Stata by splitting the
observations at 10 weeks. In Stata one can avoid splitting the data
by using tvc with t > 10 as texp.

We find that the hazard ratio is 3.70 in the first 10 weeks and 83%
higher afterwards, but the change is not significant;

Once again we find no evidence against the proportionality
assumption.
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Time-varying Covariates

The main application of episode splitting, however, is to handle
time-varying covariates.

Consider the more general model

λ(t|x(t)) = λ0(t)ex(t)′β

where x(t) is the vector of covariates at time t.

For example x(t) could be smoking status at age t in a study of
adult mortality. A long-time smoker who enters the study at age
t0, quits at age t1 > t0 and remains a non-smoker until last seen
alive at age t would be split into two records: (t0, t1] with smoking
status 1 and (t1, t] with smoking status 0.

Don’t confuse time-varying covariates with time-dependent effects.
Of course a covariate may change and have different effects over
time.
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Splitting and Standard Errors

At this point you may be worried that splitting adds observations
and could affect standard errors, but this is not the case because
the likelihood doesn’t change!

This is true of the parametric likelihood; a failure is counted
just once, while the integral of the hazard from t0 to t can be
split into two (or more) segments

It is also true of the partial likelihood, where each observation
contributes to the risk set at each failure time while appearing
in the numerator just once, no matter how we split the data

If looking at the likelihoods doesn’t convince you, try fitting a
model, splitting the data, and fitting the same model again. You’ll
get the same estimates and standard errors! Really.

There’s no need to cluster the standard errors; if you do, all you
get is a robust estimate.
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AIDS Survival in Australia

Venables and Ripley have an interesting dataset on AIDS survival
in Australia, included as Aids2 in R’s MASS library. A Stata version
of the data is available in the course website as aids2.

The variables include date of diagnosis, date of death or censoring,
and status, coded ”D” for died. The predictors are age, sex, state
and mode of transmission. The dates are coded as days since
1/1/1960.

There are 29 cases with the same date of diagnosis and death.
These are cases diagnosed after death. VR add 0.9 days to all
dates of death so they occur after other events the same day.

An important factor affecting survival was expected to be the
widespread availability of zidovudine (AZT) from mid 1987. Create
a time-varying covariate azt coded zero before July 1, 1987 and
one thereafter. Note that the split is on a calendar date, not
survival time.
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Residuals in Cox Models

Residuals play an important role in model checking. Censoring,
however, means we can’t use ordinary residuals. We will review the
most useful alternatives available for Cox models:

Martingale residuals, which are useful to identify unusual
observations and to determine suitable functional forms for
continuous predictors

Schoenfeld residuals, which can be used to check the
proportional hazards assumptions, both globally and variable
by variable

We will skip two other residuals which are less useful: deviance
residuals, a transformed version of martingale residuals, and
Cox-Snell residuals.

Martingale residuals are motivated by the theory of counting
process. We will introduce some basic concepts, but one could skip
the technicalities and jump to the definition.

10 / 30 Germán Rodŕıguez Pop 509



Counting Processes and Martingales

Instead of focusing on the waiting time Ti consider a function
Ni (t) that counts events over time. With single events Ni (t) is
zero until individual i experiences an event and then it is one.

To keep track of exposure let Yi (t) take the value one while
individual i is at risk and zero afterwards. Finally, let λi (t) denote
the hazard for individual i , which in turn follows a Cox model, so
λi (t) = λ0(t)ex

′
i β. The product λi (t)Yi (t) is called the intensity.

The stochastic process

Mi (t) = Ni (t)−
∫ t

0
λi (u)Yi (u)du

is a martingale, a process without drift where given two times
t1 < t2 the E [Mi (t2)] given the history of the process until t1 is
simply Mi (t1). Martingale increments have mean zero and are
uncorrelated. The integral is called a compensator.
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Martingale Residuals

Martingales play a central role in establishing the asymptotic
properties of Kaplan-Meier estimators, Mantel-Haenszel tests, and
Cox partial likelihood estimators.

The martingale residual for each observation is defined as

M̂i = di − ex
′
i βΛ̂0(ti )

and may be interpreted as the difference between observed and
expected failures over (0, ti ). The range is (−∞, 1).

Fleming and Harrington showed in 1991 that if the model is
correctly specified a plot of M̂i against each continuous predictor
should be linear, and otherwise the plot may help identify the
transformation needed.
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Breast Cancer in The Netherlands

Royston and Lambert illustrate the use of martingale residuals in
an analysis of breast cancer in Rotterdam.
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They fit a model using the number of nodes along with other
predictors. The martingale residuals on the left show trend. They
exponentiate the number of nodes (and take log of another
predictor, not shown here). The new residuals on the right are
flatter. Differences are clearer if you plot just the smooth.
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Schoenfeld Residuals

The Schoenfeld residual for an observation that fails at ti ,
assuming no ties, is simply the score

ri = xi −
∑

j∈Ri
xje

x ′j β∑
j∈Ri

ex
′
j β

the difference between the values of the covariates for the failure
and the risk-weighted average of the covariates over the risk set.

Schoenfeld residuals are defined only for failures, not for censored
observations, and each failure has a residual for each predictor.

Grambsch and Therneau showed in 1993 that if the coefficient of a
covariate actually varies over time, say it is βk(t) rather than just
βk , the Schoenfeld residual can be scaled so that

E (r∗ik + βk) = βk(t)

so a plot of the scaled residuals against time helps identify how the
relative risk varies over time.
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Breast Cancer in England

Royston and Lambert also have data on breast cancer in England, and
find a hazard ratio of 1.31 between the most and least deprived quintiles
of women.

Here’s a plot of the smoothed scaled Schoenfeld residuals and 95%

confidence bands on the smooth, exponentiated to reflect hazard ratios
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Clearly the hazard ratio is much higher immediately after diagnosis and

declines over time, crossing the dashed line representing proportional

hazards. What would you do in light of this result?
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Schoenfeld Residuals for Recidivism

In the computing logs I fit a Cox model to the recidivism data, and
check proportionality of hazards using Schoenfeld residuals.

The global χ2 of 12.76 on 9 d.f. shows no evidence against the
assumption of proportional hazards.

The only variable that might deserve closer scrutiny is time served,
which had the largest chi-squared statistic, 3.59 on one d.f.,
although it doesn’t reach the conventional five-percent level.

A plot of the residuals for this variable against time shows no
evidence of time dependence. Please see the website for details.
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Piecewise Exponential Regression

We consider models that assume a parametric form, so we can
easily estimate the hazard or survival probabilities, yet are flexible.

One of my favorites is the piecewise exponential model, where the
baseline hazard is assumed constant in well-chosen intervals,
defined by cutpoints

0 = τ0 < τ1 < . . . < τk−1 < τk =∞

so the baseline hazard at any time is one of k values

λ0(t) = λ0i , when t ∈ (τi−1, τi ]

The model may be fit easily by splitting the data at the cutpoints
τ1 to τk−1 and then fitting an exponential survival model with the
interval treated as a factor.
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Poisson Regression and Cox

Interestingly, the piece-wise exponential model may also be fit by
treating the failure indicators as if they were independent Poisson
outcomes.

Specifically, if dij is a failure indicator and tij is the exposure time
for individual i in interval j then we “pretend” that

dij ∼ P(µij) where µij = λ0j tije
x ′ijβ

so log tij enters the model as an offset. This trick is useful because
we can fit multilevel PWE models!

If we assume that the hazard is constant between the observed
distinct failure times and fit a PWE model we get exactly the same
result as with Cox’s partial likelihood, provided there are no ties or
we use Breslow’s approximation.

In other words a PWE model can get arbitrarily close to a Cox
model by using more detailed time intervals.
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Piecewise Gompertz Models

Instead of assuming that the hazard is constant in each interval we
could assume that the log hazard is linear on time in each interval
but with possibly different slopes.

The figure below shows PWE and PWG log-hazards with annual
intervals superimposed on the Cox estimates for the recidivism data
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The software package aML implements this method. It also allows
for interval censoring rather than just right-censoring.
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Regression Splines

More generally, we could model the log of the hazard using a
spline. A spline is a piecewise polynomial defined over a series of
knots ξ1 < . . . ξk such that the pieces join smoothly at each knot.

Cubic splines are particularly useful, and can be defined as

s(x) = β0 + β1x + β2x
2 + β3x

3 +
k∑

j=1

γk(x − ξj)3
+

where (x − ξj)3
+ is zero when x < ξj and (x − ξj)3 otherwise.

Because the spline is linear on the β and γ parameters it can be fit
by regression for given knots. (With many knots a numerically
more stable basis such as B-splines is advisable.)

A cubic spline is natural if it is linear outside the range of the
knots. This requires β2 = β3 = 0 and two constraints on the γ’s:∑
γj = 0 and

∑
γξj = 0. Usually we add knots at the min and

max, so we save only two parameters.
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Smoothing Splines

Consider a general scatterplot smoothing problem, where we have
data on n pairs (xi , yi ) and want to estimate the relationship using
a smooth function y = s(x), by minimizing the criterion

n∑
i=1

(yi − s(xi ))2 + λ

∫
[s ′′(x)]2dx

The first term is an ordinary sum of squares which captures lack of
fit. The second term is a roughness penalty based on the second
derivative of the smooth function. The parameter λ controls the
trade off between fit and roughness.

At λ = 0 you get a perfect fit interpolating the data, which are
usually rough. As λ→∞ you approach the ordinary least squares
fit, which is perfectly smooth but may not fit well.

Minimizing this criterion for fixed λ over the space of all twice
differentiable functions yields as unique solution a natural cubic
spline with knots at all data points!
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The Hazard of Recidivism

Splines are easy to fit if you split the data into small intervals of
equal width and model the hazard at the midpoint using a
regression spline. Here are some results for the recidivism data:
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I split the data by month and fitted a natural cubic spline with internal

knots at the quartiles of failures (10, 19, 34). The estimates of the

parameters are almost identical to Cox’s, but the baseline hazard is

smooth.

22 / 30 Germán Rodŕıguez Pop 509



Royston-Parmar Models

We now consider the Royston-Parmar (2002) family of models
based on transformations of the survival function. Start from a
standard proportional hazards model and take log-log to obtain

log(− log(S(t|x))) = log(− log(S0(t))) + x ′β

Starting from a proportional odds model and taking logits we get

logit(S(t|x)) = logit(S0(t)) + x ′β

A generalization uses the Aranda-Ordaz family of links

g(S0(t)) = log(
S0(t)−θ − 1

θ
)

which includes the logit when θ = 1 and approaches the log-log as
θ → 0. Interpretation is difficult in the general case.

The family is completed with the probit link to include all standard
links for binary data.
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Royston-Parmar (continued)

What about the baseline survival? They model it using a natural
cubic spline on log-time with df-1 internal knots (at quantiles).
With one df (no knots) the spline is linear and the probit, logit and
c-log-log links lead to log-normal, log-logistic and Weibull models.

The method is implemented in Stata’s stpm2 and R’s flexsurv.

For the recidivism data I fitted
Royston-Parmar models using the
probit, logit, and c-log-log scales. I
also let the θ parameter free. In all
cases I used three df, leading to
internal knots at the terciles.

Model logL

Probit −1570.07
PH −1577.67
PO −1568.88
θ −1566.66

The estimated value of θ is 2.14. The evidence suggests that
proportional odds fit better than proportional hazards. AIC would
accept freeing θ because it reduces the deviance by 4.44, but the
parameters are not directly interpretable.
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Discrete Survival

Consider now the discrete case, where the event of interest can
only occur at times t1 < t2 < . . . < tm, usually the integers
0,1,2,... My canonical example is waiting time to conception
measured in menstrual cycles.

The discrete survival function or probability of surviving up to ti is

Si = Pr{T > ti}, i = 1, . . . ,m

The discrete density function or probability of failing at ti is

fi = Pr{T = ti}, i = 1, . . . ,m

Finally the discrete-time hazard or conditional probability of failure
at ti conditional on survival to that point is

λi = Pr{T = ti |T ≥ ti} =
fi

Si−1
, i = 1, . . . ,m

Note: These are the definitions in K-P. Others define the survival using T ≥ t so that

λi = fi/Si . Both conventions are used, so watch out.
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The Logistic Model

Cox proposed a discrete-time proportional hazards model where

logit(λi (x)) = logit(λi0) + x ′β

In this model the conditional odds of surviving (or failing) the i-th
discrete time are proportional to some baseline odds.

Cox then proposed fitting this model using the partial likelihood, so
β is estimated but λi0 is not.

Allison wrote a very popular paper in 1982 proposing to fit this
model using logistic regression with a separate parameter for each
failure time.

To fit the model you split the data at the discrete failure times and
treat the resulting records as independent Bernoulli observations.
The proof follows the same lines as the equivalence between PWE
and Poisson regression.

26 / 30 Germán Rodŕıguez Pop 509



The Complementary Log-Log Model

An alternative discrete-time model uses the complementary log-log
transformation

log(− log(λi (x))) = log(− log(λi0)) + x ′β

This model results from grouping data from a continuous-time
proportional hazards model, as we noted in the GLM course.

To see this point write S(t|x) = S0(t)e
x′β

as in continuous time
and note that S0(t) =

∏
i :ti≤t(1−λi0) with grouped data to obtain

λi (x) = 1− (1− λi0))e
x′β

a relationship that is linearized by c-log-log.

Kalbfleish and Prentice (2002, p. 47) note that this is the uniquely
appropriate model for grouped continuous-time data.
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Discrete Models and Partial Exposure

Care must be exercised with partial exposure if you are using a
discrete model with grouped continuous-time data.

Consider two contraceptors, one who is lost

to follow up at 21 months and one who

discontinues at 15 months, but you group

by year. It is then very common to turn

these two cases into four records as shown

on the right. What’s wrong with this setup?

Id Year Fail

1 1 0
1 2 0
2 1 0
2 2 1

We don’t really know if the first woman survived the second year of use.
The second record should be deleted, effectively censoring the case at the
end of the first year, see “reduced sample” in Cox and Oakes.

Less obviously, it is not clear that the failure should count, because we

may not know if the second woman would have been observed throughout

the second year had she not discontinued. Why is this a problem? The

first woman could have failed before she was lost to follow up!
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The Recidivism Data

The recidivism data are well-suited for discrete analysis because the data

were collected retrospectively and everyone is potentially exposed for a

full five years with no censoring. We focus on years one to five.

In the computing logs I compare three models, continuous PWE, and

discrete c-log-log and logit. Here’s a graphic summary of coefs:
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The results of PWE and c-log-log are indistinguishable, while logit is a bit

different, reflecting odds ratios rather than relative risks. The annual

hazard is just 8%, so odds and hazards are not too different.
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Current Status Survival

Retrospective reports of breastfeeding duration typically show
substantial heaping at multiples of 12, as in Bangladesh in 1976

0
.0

5
.1

.1
5

.2
.2

5
D

en
si

ty

12 24 36 48 60 72
Reported duration of breastfeeding

.2
.4

.6
.8

1
S

til
l b

re
as

tfe
ed

in
g

0 12 24 36
Age

The figure on the right ignores reported duration and simply shows the
proportion still breastfeeding by current age of child, together with a
spline with knots at 12 and 24. There is little evidence of heaping.

All observations here are censored. If a child has been weaned the

duration is less than current age and is left censored. If a child is still

breastfeeding the duration is at least the current age and is right

censored. Yet we can estimate the survival curve!
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