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The Course

The course focuses on the statistical analysis of time-to-event or
survival data, emphasizing basic concepts and techniques with
social science applications.

We have a website at http://data.princeton.edu/pop509,
where you will find supporting materials including a course syllabus
and bibliography, as well as a collection of handouts.

In terms of statistical packages you can use Stata or R. Both have
excellent facilities for survival analysis. The website includes a
number of Stata and R logs illustrating their use.

The course is offered on a P/D/F basis. Evaluation is based on a
project, with details to follow. You are expected to do substantial
work on your own.
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Outline

1 Introduction. The survival and hazard functions. Survival
distributions and parametric models.

2 Non parametric estimation with censored data. Kaplan Meier
curves and Cox regression. Martingale residuals. Time-varying
covariates and time-dependent effects.

3 Flexible semi-parametric models. Fixed study-period and
current status survival. Models for discrete and grouped data.

4 Competing risks. Multiple causes of failure. Cause-specific
hazards. The independence assumption. The cumulative
incidence function. The Fine-Gray model.

5 Unobserved heterogeneity. Frailty distributions. The
identification problem. Heterogeneity and time-dependence.

6 Multivariate survival. Kindred lifetimes. Recurrent events.
Event-history models. Choice of time scale.
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Bibliography

The website has a bibliography, but three of the references there
deserve special mention.

My favorite survival analysis book is Kalbfleisch, John D. and
Prentice, Ross L. (2002) The Statistical Analysis of Failure
Time Data. Second Edition. New York: Wiley.

An excellent reference for Stata is Cleves, Mario; Gould,
William and Marchenko, Yulia V. (2012) An Introduction to
Survival Analysis Using Stata. Revised Third Edition. College
Station, Texas: Stata Press.

I also like the book by Therneau, Terry M. and Grambsch, P.
M. (2002) Modeling Survival Data:Extending the Cox Model.
New York: Springer. Terry is the author of the survival
analysis routines in SAS and S-Plus/R.
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Survival Data

We are interested in time-to-event or survival data

with well-defined start and end points

Sometimes observation stops before the event occurs, and the
waiting time is right-censored, so all we know is that T > t

We can also have delayed entry: observation starts when the
process is ongoing and we treat the waiting time as
left-truncated, working with T |T > t0

And of course we could have both.

Stata handles the general situation using the stset command
and R uses the function Surv().
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Sampling Frames

Often we have a window of observation and can use a cohort or
period sample

Note which episodes are included in each sampling frame, and
which are right-censored, left-truncated, or both
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Survival Function

The survival function is the probability that the event has not
occurred by time t

S(t) = Pr{T > t}
Here’s a recent survival function for U.S. males
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Density Function

The density, or unconditional frequency of events by time, tells us
how quickly the survival drops over time

f (t) = lim
dt↓0

Pr{T ∈ (t, t + dt)}/dt = −S ′(t)

Here’s the density of U.S. male deaths by age
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Hazard Function

The hazard is the conditional event rate among people at risk

λ(t) = lim
dt↓0

Pr{T ∈ (t, t + dt)|T > t}/dt =
f (t)

S(t)

Here are U.S. death rates by age, plotted in the log scale
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From Risk to Survival

Survival time can be characterized by any of these functions. For
example we can go from hazard to survival. Write

λ(t) =
f (t)

S(t)
=
−S ′(t)

S(t)
= − d

dt
log S(t)

Then integrate both sides using S(0) = 1 as a boundary condition
to obtain

S(t) = exp{−
∫ t

0
λ(u)du}

The integral is called the cumulative hazard and is denoted Λ(t)

Example: If the hazard is constant λ(t) = λ then the cumulative
hazard is Λ(t) = λt and the survival function is S(t) = exp{−λt},
an exponential distribution.
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Weibull and Gompertz

Kalbfleish and Prentice have a nice review of survival distributions,
summarized in the handout. Here are some highlights:

Weibull: the log-hazard is a linear function of log-time

λ(t) = pλptp−1

so p = 1 is the exponential. The survival is S(t) = e−(λt)p

Gompertz: The log-hazard is a linear function of time, say

λ(t) = eα+γt

The cumulative hazard is Λ(t) = eα(eγt − 1)/γ and the survival
follows from S(t) = e−Λ(t). This distribution fits adult mortality in
developed countries remarkably well, as we saw for U.S. males

Exercise: What’s the conditional probability of surviving to t given
survival to an earlier time t0?
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Gamma and Generalized Gamma

Survival distributions can also be characterized in terms of log-time

logT = α + σW

where W is like an error term. If W is extreme value then T is
Weibull with α = − log λ and σ = 1/p.

Gamma and Generalized Gamma: if W is generalized extreme
value with parameter k then T is generalized gamma, with density

f (t) = pλ(λt)pk−1e−(λt)p/Γ(k)

and survival 1− Ik [(λt)p], with α = − log λ and σ = 1/p. The
special case p = 1 is gamma and k = 1 is Weibull.

An alternative notation for the generalized gamma uses (µ, σ, κ)
where

µ = −logλ− 2σ log(κ)/κ, σ = κ/p, κ = 1/sqrt(k)

The gamma is the special case σ = κ.
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Log-Normal and Log-Logistic

Log-Normal and log-Logistic: if W is normal or logistic then T is
log-normal or log-logistic. These distributions are visualized best in
terms of the hazard
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Generalized F. A flexible model that includes all of the above as
special or limiting cases has W distributed as the log of an F
variate, for a total of 4 parameters.
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Families of Distributions

The following figure summarizes how these distributions are related

Exponential

Gompertz Weibull (Gamma) Log-normal Log-logistic
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Coale-McNeil

Coale and McNeil proposed a model of first marriage where the
probability of being married by age a can be written as

F (a) = cF0(
a− µ
σ

)

c is the probability of ever
marrying and F0() is a standard
distribution of age at marriage,
originally based on data from
Sweden and later written
analytically in terms of a
gamma distribution, see the
handout for details.
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The graph on the right shows a fit of the model to proportions
married by age in Colombia in 1976 using maximum likelihood.
The proportion who eventually marry is 85.8%, the mean age at
marriage is 22.44 and the standard deviation is 5.28.
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Maximum Likelihood

Model fitting maximizes a likelihood function that allows for
left-truncation and right-censoring. Observation starts at t0 and
ends with failure or censoring at t, with d indicating failure

A failure contributes the conditional density at t and a censored
observation the conditional survival to t, both given T > t0:

L =

{
f (t)/S(t0), if failed

S(t)/S(t0), if censored
= λ(t)d

S(t)

S(t0)

where we used the fact that f (t) = λ(t)S(t).

The log of the likelihood function can be written as

log L = d log λ(t)−
∫ t

t0

λ(u)du

and depends only on the hazard after t0.
Exercise: Write down the log-likelihood for Gompertz survival.
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Models with Covariates

There are four ways to introduce covariates in parametric survival
models

1 Parametric families, where the parameters of a distribution,
such as λ and p in a Weibull, depend on covariates

2 Accelerated life, where the log of survival time follows a linear
model

3 Proportional hazards, where the log of the hazard function
follows a linear model

4 Proportional odds, where the logit of the survival function
follows a linear model

We review briefly each of these approaches.
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Parametric Families

We let the parameters of a distribution depend on covariates, often
transforming the parameter so a linear predictor is appropriate.

For example in a Weibull distribution we could write

log λ = x ′β and log p = x ′γ

although often p is assumed the same for everyone, and p = 1
corresponds to exponential regression.

In a Coale-McNeil model we could write

µ = x ′β, log σ = x ′γ and logit(c) = x ′δ

So mean age at marriage and the log of the standard
deviation for those who marry follow linear models, and the
probability of ever marrying follows a logit model.

Fitting some of these models requires custom programming
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Accelerated Failure Time

Alternatively, we can use a linear regression model for log survival

logT = x ′β + σW

where the error term is normal, logistic or extreme value.

In this model the covariates act multiplicatively on the waiting
time, so T = T0e

x ′β where T0 = eσW is a baseline survival time.

The survival function is a stretched or compressed baseline

S(t|x) = S0(te−x
′β)

Living twice as long means same survival as someone half the age.

The hazard function is a stretched/compressed and re-scaled
baseline

λ(t|x) = λ0(te−x
′β)e−x

′β

Living twice as long means half the risk of someone half the age.
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Proportional Hazards

By far the most popular approach, assumes that covariates act
proportionately on the hazard, so

λ(t|x) = λ0(t)ex
′β

where λ0(t) is the baseline hazard for a reference individual with
x = 0 and ex

′β is the relative risk associated with covariates x .

Taking logs we obtain log λ(t|x) = log λ0(t) + x ′β, a log-linear
model for the hazard.

The survival function follows a power law

S(t|x) = S0(t)e
x′β

Fitting this model requires assuming a parametric form for the
baseline hazard, but later we’ll see how to estimate β without any
assumptions about λ0(t) using Cox’s partial likelihood.
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Proportional Odds

The last approach we will consider assumes that covariates act
proportionately on the odds of survival, so

S(t|x)

1− S(t|x)
=

S0(t)

1− S0(t)
ex
′β

where S0(t) is a baseline survival function.

The linearizing transformation here is the logit or log-odds, so

logitS(t|x) = logitS0(t) + x ′β

Don’t confuse the logit of the survival function with the logit of
the conditional probability of dying used in discrete survival!

A generalization of this model but without covariates is Brass’s
relational logit model logitS(t) = α + γlogitS0(t)
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Software Notes

Stata’s streg command can fit proportional hazard models
with exponential, Weibull, or Gompertz baseline, and AFT
models with exponential, Weibull, generalized gamma,
log-normal and log-logistic baselines. Stata does not fit
proportional odds models, but the log-logistic distribution is
both AFT and PO.

In R the workhorse is survreg() in the survival library. It
can fit Weibull, exponential, Gaussian, logistic, log-normal and
log-logistic models. These are location-scale models
equivalent to the AFT framework. The package flexsurv

can also fit Gompertz and generalized gamma models.

A quirk: R reports the log-likelihood for T , but Stata streg

reports the log-likelihood for logT instead. They differ by the
Jacobian

∑
log ti where the sum is over failures only.

Differences of log-likelihoods are not affected.
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PH and AFT for Weibull

Let us verify the equivalence of PH and AFT Weibull models with
baseline hazard λ0(t) = pλp0t

p−1.

In a PH model the hazard is scaled by the relative risk

λ(t|x) = λ0(t)ex
′β = pλp0t

p−1ex
′βPH

The result is a Weibull with the same p and new λ = λ0e
x ′βPH/p.

In an AFT model the hazard and time are both scaled

λ(t|x) = λ0(te−x
′θ)e−x

′βAFT = pλp0(te−x
′βAFT )p−1e−x

′βAFT

The result is a Weibull with the same p and new λ = λ0e
−x ′βAFT .

The two transformations lead to the same model when

βPH = −pβAFT

Notably, the Gompertz is closed under PH and AFT, but the
models are not equivalent
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Recidivism in the U.S.

The website has Stata and R logs applying parametric models to
data on recidivism, starting at recid1.html. Data pertain to
1445 convicts released from prison between 7/1/1977 and
6/30/1978 and were collected retrospectively in April 1984.

The time variable is months until they return to prison or
observation ends. There is a censoring indicator that can be used
to identify failures.

We fit a Weibull model, and show the coefficients in the
proportional hazards (PH) metric and in the accelerated failure
time (AFT) metric, noting that they are related by
βPH = −pβAFT .

We also fit a log-Normal model, which has to be in the AFT
metric, and suggest you fit a generalized gamma and use it to test
the log-normal within a more general AFT family.
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Comparing Coefficients

Here is a summary with exponentiated coefficients of various fits

Model PH AFT
Predictors Weibull Weibull Log-normal Gen. Gamma

workprg 1.095 0.893 0.939 0.972
priors 1.093 0.896 0.872 0.869
tserved 1.014 0.983 0.981 0.979
felon 0.741 1.450 1.559 1.689
alcohol 1.564 0.574 0.530 0.531
drugs 1.325 0.705 0.742 0.828
black 1.574 0.569 0.581 0.609
married 0.859 1.207 1.406 1.610
educ 0.977 1.029 1.023 1.009
age 0.996 1.005 1.004 1.003
cons 0.033 68.147 60.303 52.967
ancillary -0.216 -0.216 0.594 0.730, -0.813
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Shape of the Hazard

We often calculate the survival and hazard functions evaluated at
the mean of all predictors. Here are two fitted hazards
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Exercises: Test the hypothesis H0 : κ = 0 using (i) a likelihood
ratio test, and (ii) a Wald test.
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Ancillary Parameters

In the Gompertz distribution it is customary to model the rate
parameter and keep the shape constant, but we may also model
the shape. Stata’s streg has an ancillary() option to provide a
model for the ancillary parameter log p in Weibull, γ in Gompertz,
and log σ in log-normal and log-logistic models.

This option allows fitting non-proportional hazard models.
Consider a Gompertz model where a predictor x appears in the
models for the main and the ancillary parameter. The hazard is

λ(t, x) = e(β0+β1x)+(γ0+γ1x)t

The hazard ratio for a unit change in x is eβ1 at time 0, and
eβ1+γ1t in general. If γ1 > 0 the effect of x on survival would
increase over time.

For generalized gamma, which has two ancillary parameters, we
use ancillary() for log σ and anc2() for κ.
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Simulation

Parametric models are also useful for simulating data.

A very simple method is the probability integral transform, if T has
c.d.f. F (t) then F (X ) has a uniform distribution, as does S(T ).

If the c.d.f. (or the survival function) can be inverted we can
generate uniforms and use S−1(u) to simulate draws from S .

Examples: Exponential − log(u)/λ

Weibull (− log(u)/λp)1/p

Gompertz log(1− log(u)γ/eα)/γ

Gen Gamma I−1
k (u)1/p/λ

Log-Normal eα+σΦ−1(u)

Log-Logistic eα+σlogit(u)

For the lognormal generating normals and exponentiating is more
efficient.
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