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The Course

The course focuses on the statistical analysis of time-to-event or
survival data, emphasizing basic concepts and techniques with
social science applications.

We have a website at http://data.princeton.edu/pop509,
where you will find supporting materials including a course syllabus
and bibliography, as well as a collection of handouts.

In terms of statistical packages you can use Stata or R. Both have
excellent facilities for survival analysis. The website includes a
number of Stata and R logs illustrating their use.

The course is offered on a P/D/F basis. Evaluation is based on a
project, with details to follow. You are expected to do substantial
work on your own.

2 / 28 Germán Rodŕıguez Pop 509

Outline

1 Introduction. The survival and hazard functions. Survival
distributions and parametric models.

2 Non parametric estimation with censored data. Kaplan Meier
curves and Cox regression. Martingale residuals. Time-varying
covariates and time-dependent effects.

3 Flexible semi-parametric models. Fixed study-period and
current status survival. Models for discrete and grouped data.

4 Competing risks. Multiple causes of failure. Cause-specific
hazards. The independence assumption. The cumulative
incidence function. The Fine-Gray model.

5 Unobserved heterogeneity. Frailty distributions. The
identification problem. Heterogeneity and time-dependence.

6 Multivariate survival. Kindred lifetimes. Recurrent events.
Event-history models. Choice of time scale.
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Bibliography

The website has a bibliography, but three of the references there
deserve special mention.

My favorite survival analysis book is Kalbfleisch, John D. and
Prentice, Ross L. (2002) The Statistical Analysis of Failure
Time Data. Second Edition. New York: Wiley.

An excellent reference for Stata is Cleves, Mario; Gould,
William and Marchenko, Yulia V. (2012) An Introduction to
Survival Analysis Using Stata. Revised Third Edition. College
Station, Texas: Stata Press.

I also like the book by Therneau, Terry M. and Grambsch, P.
M. (2002) Modeling Survival Data:Extending the Cox Model.
New York: Springer. Terry is the author of the survival
analysis routines in SAS and S-Plus/R.
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Survival Data

We are interested in time-to-event or survival data

with well-defined start and end points

Sometimes observation stops before the event occurs, and the
waiting time is right-censored, so all we know is that T > t

We can also have delayed entry: observation starts when the
process is ongoing and we treat the waiting time as
left-truncated, working with T |T > t0

And of course we could have both.

Stata handles the general situation using the stset command
and R uses the function Surv().
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Sampling Frames

Often we have a window of observation and can use a cohort or
period sample

Note which episodes are included in each sampling frame, and
which are right-censored, left-truncated, or both
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Survival Function

The survival function is the probability that the event has not
occurred by time t

S(t) = Pr{T > t}
Here’s a recent survival function for U.S. males
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Density Function

The density, or unconditional frequency of events by time, tells us
how quickly the survival drops over time

f (t) = lim
dt↓0

Pr{T ∈ (t, t + dt)}/dt = −S ′(t)

Here’s the density of U.S. male deaths by age
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Hazard Function

The hazard is the conditional event rate among people at risk

λ(t) = lim
dt↓0

Pr{T ∈ (t, t + dt)|T > t}/dt =
f (t)

S(t)

Here are U.S. death rates by age, plotted in the log scale
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From Risk to Survival

Survival time can be characterized by any of these functions. For
example we can go from hazard to survival. Write

λ(t) =
f (t)

S(t)
=
−S ′(t)

S(t)
= − d

dt
log S(t)

Then integrate both sides using S(0) = 1 as a boundary condition
to obtain

S(t) = exp{−
∫ t

0
λ(u)du}

The integral is called the cumulative hazard and is denoted Λ(t)

Example: If the hazard is constant λ(t) = λ then the cumulative
hazard is Λ(t) = λt and the survival function is S(t) = exp{−λt},
an exponential distribution.
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Weibull and Gompertz

Kalbfleish and Prentice have a nice review of survival distributions,
summarized in the handout. Here are some highlights:

Weibull: the log-hazard is a linear function of log-time

λ(t) = pλptp−1

so p = 1 is the exponential. The survival is S(t) = e−(λt)p

Gompertz: The log-hazard is a linear function of time, say

λ(t) = eα+γt

The cumulative hazard is Λ(t) = eα(eγt − 1)/γ and the survival
follows from S(t) = e−Λ(t). This distribution fits adult mortality in
developed countries remarkably well, as we saw for U.S. males

Exercise: What’s the conditional probability of surviving to t given
survival to an earlier time t0?
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Gamma and Generalized Gamma

Survival distributions can also be characterized in terms of log-time

logT = α + σW

where W is like an error term. If W is extreme value then T is
Weibull with α = − log λ and σ = 1/p.

Gamma and Generalized Gamma: if W is generalized extreme
value with parameter k then T is generalized gamma, with density

f (t) = pλ(λt)pk−1e−(λt)p/Γ(k)

and survival 1− Ik [(λt)p], with α = − log λ and σ = 1/p. The
special case p = 1 is gamma and k = 1 is Weibull.

An alternative notation for the generalized gamma uses (µ, σ, κ)
where

µ = −logλ− 2σ log(κ)/κ, σ = κ/p, κ = 1/sqrt(k)

The gamma is the special case σ = κ.
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Log-Normal and Log-Logistic

Log-Normal and log-Logistic: if W is normal or logistic then T is
log-normal or log-logistic. These distributions are visualized best in
terms of the hazard
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Generalized F. A flexible model that includes all of the above as
special or limiting cases has W distributed as the log of an F
variate, for a total of 4 parameters.
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Families of Distributions

The following figure summarizes how these distributions are related

Exponential
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Coale-McNeil

Coale and McNeil proposed a model of first marriage where the
probability of being married by age a can be written as

F (a) = cF0(
a− µ
σ

)

c is the probability of ever
marrying and F0() is a standard
distribution of age at marriage,
originally based on data from
Sweden and later written
analytically in terms of a
gamma distribution, see the
handout for details.
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The graph on the right shows a fit of the model to proportions
married by age in Colombia in 1976 using maximum likelihood.
The proportion who eventually marry is 85.8%, the mean age at
marriage is 22.44 and the standard deviation is 5.28.
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Maximum Likelihood

Model fitting maximizes a likelihood function that allows for
left-truncation and right-censoring. Observation starts at t0 and
ends with failure or censoring at t, with d indicating failure

A failure contributes the conditional density at t and a censored
observation the conditional survival to t, both given T > t0:

L =

{
f (t)/S(t0), if failed

S(t)/S(t0), if censored
= λ(t)d

S(t)

S(t0)

where we used the fact that f (t) = λ(t)S(t).

The log of the likelihood function can be written as

log L = d log λ(t)−
∫ t

t0

λ(u)du

and depends only on the hazard after t0.
Exercise: Write down the log-likelihood for Gompertz survival.
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Models with Covariates

There are four ways to introduce covariates in parametric survival
models

1 Parametric families, where the parameters of a distribution,
such as λ and p in a Weibull, depend on covariates

2 Accelerated life, where the log of survival time follows a linear
model

3 Proportional hazards, where the log of the hazard function
follows a linear model

4 Proportional odds, where the logit of the survival function
follows a linear model

We review briefly each of these approaches.
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Parametric Families

We let the parameters of a distribution depend on covariates, often
transforming the parameter so a linear predictor is appropriate.

For example in a Weibull distribution we could write

log λ = x ′β and log p = x ′γ

although often p is assumed the same for everyone, and p = 1
corresponds to exponential regression.

In a Coale-McNeil model we could write

µ = x ′β, log σ = x ′γ and logit(c) = x ′δ

So mean age at marriage and the log of the standard
deviation for those who marry follow linear models, and the
probability of ever marrying follows a logit model.

Fitting some of these models requires custom programming
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Accelerated Failure Time

Alternatively, we can use a linear regression model for log survival

logT = x ′β + σW

where the error term is normal, logistic or extreme value.

In this model the covariates act multiplicatively on the waiting
time, so T = T0e

x ′β where T0 = eσW is a baseline survival time.

The survival function is a stretched or compressed baseline

S(t|x) = S0(te−x
′β)

Living twice as long means same survival as someone half the age.

The hazard function is a stretched/compressed and re-scaled
baseline

λ(t|x) = λ0(te−x
′β)e−x

′β

Living twice as long means half the risk of someone half the age.

19 / 28 Germán Rodŕıguez Pop 509

Proportional Hazards

By far the most popular approach, assumes that covariates act
proportionately on the hazard, so

λ(t|x) = λ0(t)ex
′β

where λ0(t) is the baseline hazard for a reference individual with
x = 0 and ex

′β is the relative risk associated with covariates x .

Taking logs we obtain log λ(t|x) = log λ0(t) + x ′β, a log-linear
model for the hazard.

The survival function follows a power law

S(t|x) = S0(t)e
x′β

Fitting this model requires assuming a parametric form for the
baseline hazard, but later we’ll see how to estimate β without any
assumptions about λ0(t) using Cox’s partial likelihood.
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Proportional Odds

The last approach we will consider assumes that covariates act
proportionately on the odds of survival, so

S(t|x)

1− S(t|x)
=

S0(t)

1− S0(t)
ex
′β

where S0(t) is a baseline survival function.

The linearizing transformation here is the logit or log-odds, so

logitS(t|x) = logitS0(t) + x ′β

Don’t confuse the logit of the survival function with the logit of
the conditional probability of dying used in discrete survival!

A generalization of this model but without covariates is Brass’s
relational logit model logitS(t) = α + γlogitS0(t)
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Software Notes

Stata’s streg command can fit proportional hazard models
with exponential, Weibull, or Gompertz baseline, and AFT
models with exponential, Weibull, generalized gamma,
log-normal and log-logistic baselines. Stata does not fit
proportional odds models, but the log-logistic distribution is
both AFT and PO.

In R the workhorse is survreg() in the survival library. It
can fit Weibull, exponential, Gaussian, logistic, log-normal and
log-logistic models. These are location-scale models
equivalent to the AFT framework. The package flexsurv

can also fit Gompertz and generalized gamma models.

A quirk: R reports the log-likelihood for T , but Stata streg

reports the log-likelihood for logT instead. They differ by the
Jacobian

∑
log ti where the sum is over failures only.

Differences of log-likelihoods are not affected.
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PH and AFT for Weibull

Let us verify the equivalence of PH and AFT Weibull models with
baseline hazard λ0(t) = pλp0t

p−1.

In a PH model the hazard is scaled by the relative risk

λ(t|x) = λ0(t)ex
′β = pλp0t

p−1ex
′βPH

The result is a Weibull with the same p and new λ = λ0e
x ′βPH/p.

In an AFT model the hazard and time are both scaled

λ(t|x) = λ0(te−x
′θ)e−x

′βAFT = pλp0(te−x
′βAFT )p−1e−x

′βAFT

The result is a Weibull with the same p and new λ = λ0e
−x ′βAFT .

The two transformations lead to the same model when

βPH = −pβAFT
Notably, the Gompertz is closed under PH and AFT, but the
models are not equivalent
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Recidivism in the U.S.

The website has Stata and R logs applying parametric models to
data on recidivism, starting at recid1.html. Data pertain to
1445 convicts released from prison between 7/1/1977 and
6/30/1978 and were collected retrospectively in April 1984.

The time variable is months until they return to prison or
observation ends. There is a censoring indicator that can be used
to identify failures.

We fit a Weibull model, and show the coefficients in the
proportional hazards (PH) metric and in the accelerated failure
time (AFT) metric, noting that they are related by
βPH = −pβAFT .

We also fit a log-Normal model, which has to be in the AFT
metric, and suggest you fit a generalized gamma and use it to test
the log-normal within a more general AFT family.
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Comparing Coefficients

Here is a summary with exponentiated coefficients of various fits

Model PH AFT
Predictors Weibull Weibull Log-normal Gen. Gamma

workprg 1.095 0.893 0.939 0.972
priors 1.093 0.896 0.872 0.869
tserved 1.014 0.983 0.981 0.979
felon 0.741 1.450 1.559 1.689
alcohol 1.564 0.574 0.530 0.531
drugs 1.325 0.705 0.742 0.828
black 1.574 0.569 0.581 0.609
married 0.859 1.207 1.406 1.610
educ 0.977 1.029 1.023 1.009
age 0.996 1.005 1.004 1.003
cons 0.033 68.147 60.303 52.967
ancillary -0.216 -0.216 0.594 0.730, -0.813
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Shape of the Hazard

We often calculate the survival and hazard functions evaluated at
the mean of all predictors. Here are two fitted hazards
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Exercises: Test the hypothesis H0 : κ = 0 using (i) a likelihood
ratio test, and (ii) a Wald test.
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Ancillary Parameters

In the Gompertz distribution it is customary to model the rate
parameter and keep the shape constant, but we may also model
the shape. Stata’s streg has an ancillary() option to provide a
model for the ancillary parameter log p in Weibull, γ in Gompertz,
and log σ in log-normal and log-logistic models.

This option allows fitting non-proportional hazard models.
Consider a Gompertz model where a predictor x appears in the
models for the main and the ancillary parameter. The hazard is

λ(t, x) = e(β0+β1x)+(γ0+γ1x)t

The hazard ratio for a unit change in x is eβ1 at time 0, and
eβ1+γ1t in general. If γ1 > 0 the effect of x on survival would
increase over time.

For generalized gamma, which has two ancillary parameters, we
use ancillary() for log σ and anc2() for κ.
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Simulation

Parametric models are also useful for simulating data.

A very simple method is the probability integral transform, if T has
c.d.f. F (t) then F (X ) has a uniform distribution, as does S(T ).

If the c.d.f. (or the survival function) can be inverted we can
generate uniforms and use S−1(u) to simulate draws from S .

Examples: Exponential − log(u)/λ

Weibull (− log(u)/λp)1/p

Gompertz log(1− log(u)γ/eα)/γ

Gen Gamma I−1
k (u)1/p/λ

Log-Normal eα+σΦ−1(u)

Log-Logistic eα+σlogit(u)

For the lognormal generating normals and exponentiating is more
efficient.
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Survival Analysis
2. Non-Parametric Estimation

Germán Rodŕıguez

Princeton University

February 12, 2018
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Overview

We now consider the analysis of survival data without making
assumptions about the form of the distribution. We will review

1 The Kaplan-Meier estimator of the survival curve and the
Nelson-Aalen estimator of the cumulative hazard.

2 The Mantel-Haenszel test and other non-parametric tests for
comparing two or more survival distributions.

3 Cox’s proportional hazards model and the partial likelihood,
including time-varying covariates and time-dependent or
non-proportional effects,

Later we will discuss flexible semi-parametric models that represent
a compromise between fully parametric and non-parametric
alternatives.
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Kaplan-Meier

If there is no censoring, the obvious estimate of the survival
function is the empirical survival function or proportion alive at t

Ŝ(t) =
1

n

n∑

i=1

I (ti > t).

Kaplan and Meier (1958) extended the estimator to right-censored
and left-truncated data by focusing on conditional survival

Ŝ(t) =
∏

i :ti≤t
(1− di

ni
)

where t1 < t2 < · · · < tm are the distinct failure times, di is the
number of failures at ti , and ni the number at risk or alive just
before ti .
The estimator is intuitively appealing, and reduces to the empirical
survival function if there is no censoring or truncation.
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Kaplan-Meier

The Kaplan-Meier estimator is a step function with discontinuities
at the failure times. If the largest observation time is censored the
curve doesn’t drop to zero and is undefined after the last censoring
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These are the famous Gehan data on duration of remission in
leukemia patients in treated and control groups
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Greenwood

Standard errors may be derived using a binomial argument and the
delta method, as shown in the notes. This leads to

var(Ŝ(t)) = Ŝ(t)2
∑

i :ti≤t

di
ni (ni − di )

a formula derived by Greenwood for life tables in 1926! If there is
no censoring/truncation it equals the standard binomial variance.
This result can be used to compute pointwise confidence bands
around the estimate. To avoid values outside (0,1) and improve
the normal approximation it is better to work with the log-log
transformation and its variance

var(log(− log Ŝ(t))) =
var(log Ŝ(t))

(log Ŝ(t))2

which gives good results even for small samples.
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Greenwood (continued)

Here are pointwise confidence bounds for the Gehan data.
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Note that there is some overlap at low durations, but as we’ll see,
the curves are significantly different.
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Nelson-Aalen

To estimate the cumulative hazard we could use − log Ŝ(t). A
direct estimator due to Nelson and Aalen is

Λ̂(t) =
∑

i :ti≤t

di
ni

This estimator is closely related to the theory of counting
processes, representing the expected number of events in (0, t] for
a unit permanently at risk. This interpretation is particularly useful
for recurrent events.
The variance of the Nelson-Aalen estimator follows from a Poisson
argument

var(Λ̂(t)) =
∑

i :ti≤t

di
n2
i

The normal approximation is improved if one works instead with
the log of the cumulative hazard.
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Nelson-Aalen (continued)

Here are the estimated cumulative hazards for the Gehan data
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We see how the risk accumulates much faster in the control
groups. Less clearly, the approximate linearity suggests a relatively
constant risk at early durations in both groups.
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Nelson-Aalen (continued)

Here are 95% confidence bounds for the Nelson-Aalen estimates by
group, calculated in the log-scale and then converted back to
cumulative hazards.
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There is a lot of uncertainty about the cumulative hazard in the
control group after 20 weeks.
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Kaplan-Meier vs Nelson-Aalen

Breslow noted that one could estimate the survival as e−Λ̂(t)

starting from a NA estimate. This is usually very close to the KM
estimate, as shown here for the pooled Gehan data.
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Convention, however, is to use Kaplan-Meier for survival and
Nelson-Aalen for cuulative hazards.
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Estimating the Hazard

This is hard! if you difference the Nelson-Aalen estimate, or minus
the log of the Kaplan-Meier estimate, you get a rough estimate
with spikes at the failure times. Stata uses a kernel smoother
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Alternative Epanechnikov kernel

Alternatives are splines and other smoothers. We will return to this
issue when we consider flexible parametric models.
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Mantel-Haenszel

We now compare two survival curves, such as treated and controls.

Imagine setting up a 2× 2 table for
each distinct failure time with the
results by group. Let dij denote the
number of failures and nij the number
at risk at time ti in group j

Fail Survive
Treated di1 ni1
Control ni2

di ni − di ni

The conditional distribution of dij given both margins, that is given
the number at risk in each group and the total number of failures
at ti , is hypergeometric, with mean and variance

E (dij) = di
nij
ni

and var(dij) =
nij(ni − nij)di (ni − di )

(ni − 1)n2
i

Intuitively, if the survival curves were the same we would expect
the number of deaths in each group to be proportional to the
number at risk in each group.
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Mantel-Haenzsel

The Mantel-Haenszel statistic is obtained by summing over all
distinct failure times the number of observed and expected failures
and the variances

T =
D2

V
where D =

∑

i

(di1 − E (di1)) and V =
∑

i

var(di1)

The asymptotic distribution of the statistic is χ2
1.

For example in the Gehan data the treated group has 9 failures
where one would expect 19.25. The variance is 6.26, leading to a
highly significant χ2 statistic of 16.79 on one d.f.

It doesn’t matter which of the two groups is used in the
calculation, the result is the same. The controls have 21 failures
where one would expect 10.75 and the variance is the same 6.26.
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Weighted Log-Rank Tests

The Mantel-Haenszel test gives equal weight to failures at each
time and is optimal when the hazards are proportional. Sometimes
one might have reason to give more weight to differences at earlier
or later times. The table below shows some alternatives:

Test Weight χ2

Mantel-Haenszel or log-rank 1 16.79
Wilcoxon-Breslow-Gehan n 13.46
Tarone-Ware

√
n 15.12

Peto-Peto-Prentice S̃(tj) 14.08

Fleming-Harrington Ŝ(tj−1)p(1− Ŝ(tj−1))q 14.45

All these test use the statistic T = D2/V where

D =
∑

wi (dij − E (dij)) and V =
∑

w2
i var(dij).

Peto’s S̃(t) is like K-M but divides by n + 1 instead of n. For FH I
set p = 1 and q = 0.
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The k-sample Test

These tests extend to more than two groups. In addition to the
expected values and variances we need the covariances of counts of
events in groups r and s, which are given by

cov(dir , dis) = −di (ni − di )

ni − 1

nirnis
n2
i

For each time ti we now have a vector with counts of failures by
group, its expected value and its variance covariance matrix. We
sum over all distinct failure times and construct a quadratic form

Q = D ′V−D where D =
∑

i

(di−E (di )) and V =
∑

i

var(di )

where V− is a generalized inverse of V , obtained for example by
omitting one of the groups from V .

The large sample distribution of the statistic is χ2 with d.f. equal
to the number of groups minus one. Weights are incorporated just
as in the two-sample case.
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The k-sample Test (continued)

Let us compute a 3-group test ”by hand” using data from the
Stata manual on days to tumor formation in three groups of
animals exposed to carcinogenic agents.

The observed and expected counts of events in each group and the
variance-covariance matrix, summed over the nine distinct failure
times, are

O =




4
6
5


 , E =




6.41
6.80
1.79


 , and V =




2.70
−2.02 2.66
−0.68 −0.64 1.32




The quadratic form using a Moore-Penrose generalized inverse is

D ′V−D = 8.05

a significant χ2 on 2 d.f. with a p-value of 0.018. The same result
is obtained by omitting the last row of D and the last row and
column of V .
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Software Notes

Stata can compute all of the estimates we have discussed using
various subcommands of the sts command, including sts list

for Kaplan-Meier and Nelson-Aalen estimates, sts graph for plots
of the survival and hazard functions, and sts test for
Mantel-Haenszel and weighted log-rank tests. The data must be
stset first.

R’s survival package provides functions survfit() to compute
Kaplan-Meier estimates, with Nelson-Aalen computed ”by hand”,
and survdiff() to test equality of survival curves using
Mantel-Haenszel or weighted log-rank tests. The function
Surv(t,d) is used to specify the time variable and the failure
indicator.

The logs at http://data.princeton.edu/pop509/gehan.html
analyze the Gehan data using both Stata and R.
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Cox Regression

Consider now estimating a proportional hazards model

λ(t|x) = λ0(t)ex
′β

without making any assumptions about the baseline hazard.

Cox proposed looking at each failure time and computing a
conditional probability of failure given the observations at risk at
that time. If there are no ties the probability for ti is

λ0(ti )e
x ′i β

∑
j∈Ri

λ0(ti )e
x ′j β

=
ex
′
i β

∑
j∈Ri

ex
′
j β

where Ri denotes the risk set at ti .

Note that the baseline hazard cancels out and we get a conditional
probability that depends only on β.

18 / 1 Germán Rodŕıguez Pop 509

The Partial Likelihood

Cox then proposed treating the product of these conditional
probabilities as if it was a likelihood. He called it a conditional
likelihood and later more correctly a partial likelihood

L =
∏

i

ex
′
i β

∑
j∈Ri

ex
′
j β

Kalbfleisch and Prentice showed that if the covariates are fixed
over time this is the marginal likelihood of the ranks of the
observations, where you consider just the order in which failures
occur instead of the actual times.

More rigourous justification was provided later in terms of the
theory of counting processes, see Andersen et al. (1993) for details.
Great intuition proven right!

Notably, the partial likelihood is identical to that of a conditional
logit model!
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Score and Information

Maximization of this likelihood is not difficult. The log-likelihood is

log L =
∑

i

{x ′iβ − log
∑

j∈Ri

ex
′
j β}

The score or first derivative can be shown to be

U(β) =
∂ log L

∂β
=

∑

i

{xi − Ai (β)}

where Ai (β) is the weighted mean of the covariates over the risk
set using the relative risks as weights.
The observed information or negative second derivative is

I (β) = −∂
2 log L

∂ββ′
=

∑

i

Ci (β)

where Ci (β) is the weighted covariance of the covariates over the
risk set, with the relative risks as weights.
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The Problem of Ties

So far we assumed no ties. If there are lots of ties the data are
probably discrete or have been grouped, and Cox regression is not
appropriate. Otherwise one can adjust the partial likelihood using
one of four methods

1 Cox’s exact partial likelihood looks at all possible ways of
selecting di failures out of the risk set Ri . This is
computationally very intensive.

2 The “exact” marginal likelihood of the ranks can be computed
by numerical integration. Not as difficult, but still demanding.

3 Breslow’s approximation treats the tied failures as coming
from the same risk set. This is the quickest method.

4 Efron’s approximation considers all possible ways of breaking
the ties and adjusts the risk set accordingly. This turns out to
be reasonably fast and remarkably accurate.
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The Problem of Ties (continued)

Consider a simple example where the risk set consists of {1, 2, 3, 4}
and {1, 2} are observed to fail. Let i have relative risk ri = ex

′
i β.

Cox looks at all possible ways of choosing two to fail and computes
r1r2

r1r2+r1r3+r1r4+r2r3+r2r4+r3r4

Breslow keeps the risk set constant after a failure, writing
r1r2

(r1+r2+r3+r4)2

Efron notes that if {1} fails first the risk set becomes {2, 3, 4}, but
if {2} fails first it becomes {1, 3, 4} so he averages

r1r2

(r1+r2+r3+r4)(
r1+r2

2
+r3+r4)

I strongly recommend Efron when an exact calculation is not
feasible. Stata uses Breslow and R uses Efron as the default.
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Cox and the Gehan Data

This is the actual example used in Cox’s 1972 paper.

Fitting a proportional hazards model using the exact partial
likelihood (option exactp in Stata and ties="exact" in R) with
an indicator for the control group gives an estimate of 1.628,
equivalent to a relative risk or hazard ratio of 5.095.
At any time since remission the risk of relapse for patients in the
control group is 5 times the risk of treated patients. The drug is
remarkably effective.
The computing logs use an indicator for treated, so the coefficient
has the opposite sign: -1.628, which translates into a risk ratio of
0.196.
This means that the drug reduces the risk of relapse by 80% at any
given duration since remission.
Obviously the choice of reference category is up to the researcher.
Here I follow the original paper.
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Ties and the Gehan Data

Here’s how the treatment of ties affects the results:

Breslow Efron Marginal Partial

eβ 4.52 4.82 4.94 5.09
β 1.51 1.57 1.60 1.63
z 3.68 3.81 3.79 3.76

As you can see, Efron comes much closer to the exact partial
likelihood. (Marginal is even better but is slower and not available
in R.)

Cox himself got β̂ = 1.65 or a risk ratio of 5.21 by evaluating the
exact partial likelihood by hand over a grid of values!

The table above also shows the usual z-tests obtained as the ratio
of the estimate to its standard error. This is just one of several
possible tests.
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Testing Hypotheses

There are three ways to test hypotheses in Cox models

1 Likelihood ratio tests, comparing the partial likelihoods of
nested models. Usually requires fitting two models

2 Wald tests, based on the large sample distribution of partial
likelihood estimates

β̂ ∼ N(β, I−1(β))

Can be computed by fitting just one model.
3 Score tests, based on the large sample distribution of the first

derivative of the partial likelihood

U(β) ∼ N(0, I (β))

Sometimes can be calculated without fitting any models!

These tests are all asymptotically equivalent, but usually we prefer
likelihood ratio tests. I mention the score test because it happens
to be equivalent to the Mantel-Haenszel test!
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Testing Hypotheses (continued)

Here are the results of these tests using the exact partial likelihood:

the likelihood ratio, which compares the model with two
groups with the null, is 16.8 on one d.f. (This is our preferred
test.)

the Wald test is z = 3.76, and is equivalent to a χ2 of 14.1 on
one d.f. based on the asymptotic normality of the estimator

the score test is based on the fact that the score has a normal
distribution with variance given by the information matrix.
Under the hypothesis of no group difference the score is 10.25
and the information is 6.2570, yielding a chi-squared of 16.79.
Looks familiar? Details of the calculation appear in Table 2 of
Cox’s paper.

The group difference is clearly not due to chance.
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Baseline Survival

We now consider estimation of the baseline survival given a partial
likelihood estimator of β.

An argument similar to Kaplan and Meier’s leads to estimating the
baseline survival when there are no ties as

Ŝ0(t) =
∏

i :ti≤t
(1− ex

′
i β̂

∑
j∈Ri

ex
′
j β̂

)e
−x′i β̂

which is just like K-M but with the relative risks as weights. The
exponential on the right scales the probability for observation i into
a baseline.

If there are ties an iterative procedure is required, but the
underlying logic is the same. See the notes for details.

The resulting estimator is a step function with drops at the
observed failure times.
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Baseline Survival (continued)

The figure below reproduces Figure 1 in Cox’s original paper,
showing the estimated survival for the treated and control groups
under proportional hazards, overlaid on separate K-M estimates
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Stata’s stcoxkm can do essentially this plot (but is not as pretty :)
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Baseline Cumulative Hazard

We can also define an estimate of the baseline cumulative hazard
that extends the Nelson-Aalen estimate.

This is in fact easier to derive because it simply equates the
observed and expected failures at each distinct failure time, yielding

Λ̂0(t) =
∑

i :ti≤t

di
∑

j∈Ri
ex

′
j β̂

where the sum in the denominator is over the risk set at ti .

If there are no covariates this estimator reduces to the ordinary
Nelson-Aalen, just like the baseline survival reduces to
Kaplan-Meier.

The hazard itself can be estimated by differencing the cumulative
hazard, but is very ”spiky” and usually requires smoothing.
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The Log-log Plot

A simpler way to check proportionality of hazards with two or more
groups is to plot − log(− log Ŝ(t)) versus log t using separate
Kaplan-Meier estimates.
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If the assumption is tenable the lines should be parallel, as is
clearly the case for the Gehan data.
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Interactions With Time

Another way to check proportionality of hazards is to add
interactions with time. In his original paper Cox allows the
treatment effect to vary linearly with time, effectively fitting the
model

λ(t|x) = λ0(t)eβx+γxt

The log of the hazard ratio is β at time zero and increases γ per
unit of time.

The hazard ratio itself is eβ at the origin and is multiplied by eγ

for each unit of time.

A test of H0 : γ = 0 using a likelihood ratio, Wald, or score
statistic checks proportionality of hazards against a linear trend in
the log-hazard over time.

4 / 30 Germán Rodŕıguez Pop 509



Software Notes

In order to include interactions with time in R we need to split the
data using the powerful survSplit() function. In the computing
logs I show how to split the Gehan data at each failure point and
then add an interaction with time.

In Stata we can do the same thing with stsplit, which has the
option at(failures) to split at each failure time. However,
stcox can also fit time interactions without splitting the data: the
option tvc defines a variable to be interacted with time, and texp

defines the expression to be used, typically time itself.

Either way, we find that the estimated hazard ratio is 4.86 at
remission and declines 0.1% per week. The trend is not significant,
so we have no evidence against the proportional hazards
assumption.
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Time Expressions: Indicators

Another way to test for interactions is to allow different effects of a
covariate before and after a set time, say 10 weeks.

In the computing logs I do this in R and Stata by splitting the
observations at 10 weeks. In Stata one can avoid splitting the data
by using tvc with t > 10 as texp.

We find that the hazard ratio is 3.70 in the first 10 weeks and 83%
higher afterwards, but the change is not significant;

Once again we find no evidence against the proportionality
assumption.
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Time-varying Covariates

The main application of episode splitting, however, is to handle
time-varying covariates.

Consider the more general model

λ(t|x(t)) = λ0(t)ex(t)′β

where x(t) is the vector of covariates at time t.

For example x(t) could be smoking status at age t in a study of
adult mortality. A long-time smoker who enters the study at age
t0, quits at age t1 > t0 and remains a non-smoker until last seen
alive at age t would be split into two records: (t0, t1] with smoking
status 1 and (t1, t] with smoking status 0.

Don’t confuse time-varying covariates with time-dependent effects.
Of course a covariate may change and have different effects over
time.
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Splitting and Standard Errors

At this point you may be worried that splitting adds observations
and could affect standard errors, but this is not the case because
the likelihood doesn’t change!

This is true of the parametric likelihood; a failure is counted
just once, while the integral of the hazard from t0 to t can be
split into two (or more) segments

It is also true of the partial likelihood, where each observation
contributes to the risk set at each failure time while appearing
in the numerator just once, no matter how we split the data

If looking at the likelihoods doesn’t convince you, try fitting a
model, splitting the data, and fitting the same model again. You’ll
get the same estimates and standard errors! Really.

There’s no need to cluster the standard errors; if you do, all you
get is a robust estimate.
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AIDS Survival in Australia

Venables and Ripley have an interesting dataset on AIDS survival
in Australia, included as Aids2 in R’s MASS library. A Stata version
of the data is available in the course website as aids2.

The variables include date of diagnosis, date of death or censoring,
and status, coded ”D” for died. The predictors are age, sex, state
and mode of transmission. The dates are coded as days since
1/1/1960.

There are 29 cases with the same date of diagnosis and death.
These are cases diagnosed after death. VR add 0.9 days to all
dates of death so they occur after other events the same day.

An important factor affecting survival was expected to be the
widespread availability of zidovudine (AZT) from mid 1987. Create
a time-varying covariate azt coded zero before July 1, 1987 and
one thereafter. Note that the split is on a calendar date, not
survival time.
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Residuals in Cox Models

Residuals play an important role in model checking. Censoring,
however, means we can’t use ordinary residuals. We will review the
most useful alternatives available for Cox models:

Martingale residuals, which are useful to identify unusual
observations and to determine suitable functional forms for
continuous predictors

Schoenfeld residuals, which can be used to check the
proportional hazards assumptions, both globally and variable
by variable

We will skip two other residuals which are less useful: deviance
residuals, a transformed version of martingale residuals, and
Cox-Snell residuals.

Martingale residuals are motivated by the theory of counting
process. We will introduce some basic concepts, but one could skip
the technicalities and jump to the definition.
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Counting Processes and Martingales

Instead of focusing on the waiting time Ti consider a function
Ni (t) that counts events over time. With single events Ni (t) is
zero until individual i experiences an event and then it is one.

To keep track of exposure let Yi (t) take the value one while
individual i is at risk and zero afterwards. Finally, let λi (t) denote
the hazard for individual i , which in turn follows a Cox model, so
λi (t) = λ0(t)ex

′
i β. The product λi (t)Yi (t) is called the intensity.

The stochastic process

Mi (t) = Ni (t)−
∫ t

0
λi (u)Yi (u)du

is a martingale, a process without drift where given two times
t1 < t2 the E [Mi (t2)] given the history of the process until t1 is
simply Mi (t1). Martingale increments have mean zero and are
uncorrelated. The integral is called a compensator.
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Martingale Residuals

Martingales play a central role in establishing the asymptotic
properties of Kaplan-Meier estimators, Mantel-Haenszel tests, and
Cox partial likelihood estimators.

The martingale residual for each observation is defined as

M̂i = di − ex
′
i βΛ̂0(ti )

and may be interpreted as the difference between observed and
expected failures over (0, ti ). The range is (−∞, 1).

Fleming and Harrington showed in 1991 that if the model is
correctly specified a plot of M̂i against each continuous predictor
should be linear, and otherwise the plot may help identify the
transformation needed.
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Breast Cancer in The Netherlands

Royston and Lambert illustrate the use of martingale residuals in
an analysis of breast cancer in Rotterdam.
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They fit a model using the number of nodes along with other
predictors. The martingale residuals on the left show trend. They
exponentiate the number of nodes (and take log of another
predictor, not shown here). The new residuals on the right are
flatter. Differences are clearer if you plot just the smooth.
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Schoenfeld Residuals

The Schoenfeld residual for an observation that fails at ti ,
assuming no ties, is simply the score

ri = xi −
∑

j∈Ri
xje

x ′j β

∑
j∈Ri

ex
′
j β

the difference between the values of the covariates for the failure
and the risk-weighted average of the covariates over the risk set.

Schoenfeld residuals are defined only for failures, not for censored
observations, and each failure has a residual for each predictor.

Grambsch and Therneau showed in 1993 that if the coefficient of a
covariate actually varies over time, say it is βk(t) rather than just
βk , the Schoenfeld residual can be scaled so that

E (r∗ik + βk) = βk(t)

so a plot of the scaled residuals against time helps identify how the
relative risk varies over time.
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Breast Cancer in England

Royston and Lambert also have data on breast cancer in England, and
find a hazard ratio of 1.31 between the most and least deprived quintiles
of women.

Here’s a plot of the smoothed scaled Schoenfeld residuals and 95%

confidence bands on the smooth, exponentiated to reflect hazard ratios
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Clearly the hazard ratio is much higher immediately after diagnosis and

declines over time, crossing the dashed line representing proportional

hazards. What would you do in light of this result?
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Schoenfeld Residuals for Recidivism

In the computing logs I fit a Cox model to the recidivism data, and
check proportionality of hazards using Schoenfeld residuals.

The global χ2 of 12.76 on 9 d.f. shows no evidence against the
assumption of proportional hazards.

The only variable that might deserve closer scrutiny is time served,
which had the largest chi-squared statistic, 3.59 on one d.f.,
although it doesn’t reach the conventional five-percent level.

A plot of the residuals for this variable against time shows no
evidence of time dependence. Please see the website for details.
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Piecewise Exponential Regression

We consider models that assume a parametric form, so we can
easily estimate the hazard or survival probabilities, yet are flexible.

One of my favorites is the piecewise exponential model, where the
baseline hazard is assumed constant in well-chosen intervals,
defined by cutpoints

0 = τ0 < τ1 < . . . < τk−1 < τk =∞

so the baseline hazard at any time is one of k values

λ0(t) = λ0i , when t ∈ (τi−1, τi ]

The model may be fit easily by splitting the data at the cutpoints
τ1 to τk−1 and then fitting an exponential survival model with the
interval treated as a factor.

17 / 30 Germán Rodŕıguez Pop 509

Poisson Regression and Cox

Interestingly, the piece-wise exponential model may also be fit by
treating the failure indicators as if they were independent Poisson
outcomes.

Specifically, if dij is a failure indicator and tij is the exposure time
for individual i in interval j then we “pretend” that

dij ∼ P(µij) where µij = λ0j tije
x ′ijβ

so log tij enters the model as an offset. This trick is useful because
we can fit multilevel PWE models!

If we assume that the hazard is constant between the observed
distinct failure times and fit a PWE model we get exactly the same
result as with Cox’s partial likelihood, provided there are no ties or
we use Breslow’s approximation.

In other words a PWE model can get arbitrarily close to a Cox
model by using more detailed time intervals.
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Piecewise Gompertz Models

Instead of assuming that the hazard is constant in each interval we
could assume that the log hazard is linear on time in each interval
but with possibly different slopes.

The figure below shows PWE and PWG log-hazards with annual
intervals superimposed on the Cox estimates for the recidivism data
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The software package aML implements this method. It also allows
for interval censoring rather than just right-censoring.
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Regression Splines

More generally, we could model the log of the hazard using a
spline. A spline is a piecewise polynomial defined over a series of
knots ξ1 < . . . ξk such that the pieces join smoothly at each knot.

Cubic splines are particularly useful, and can be defined as

s(x) = β0 + β1x + β2x
2 + β3x

3 +
k∑

j=1

γk(x − ξj)3
+

where (x − ξj)3
+ is zero when x < ξj and (x − ξj)3 otherwise.

Because the spline is linear on the β and γ parameters it can be fit
by regression for given knots. (With many knots a numerically
more stable basis such as B-splines is advisable.)

A cubic spline is natural if it is linear outside the range of the
knots. This requires β2 = β3 = 0 and two constraints on the γ’s:∑
γj = 0 and

∑
γξj = 0. Usually we add knots at the min and

max, so we save only two parameters.
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Smoothing Splines

Consider a general scatterplot smoothing problem, where we have
data on n pairs (xi , yi ) and want to estimate the relationship using
a smooth function y = s(x), by minimizing the criterion

n∑

i=1

(yi − s(xi ))2 + λ

∫
[s ′′(x)]2dx

The first term is an ordinary sum of squares which captures lack of
fit. The second term is a roughness penalty based on the second
derivative of the smooth function. The parameter λ controls the
trade off between fit and roughness.

At λ = 0 you get a perfect fit interpolating the data, which are
usually rough. As λ→∞ you approach the ordinary least squares
fit, which is perfectly smooth but may not fit well.

Minimizing this criterion for fixed λ over the space of all twice
differentiable functions yields as unique solution a natural cubic
spline with knots at all data points!
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The Hazard of Recidivism

Splines are easy to fit if you split the data into small intervals of
equal width and model the hazard at the midpoint using a
regression spline. Here are some results for the recidivism data:
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I split the data by month and fitted a natural cubic spline with internal

knots at the quartiles of failures (10, 19, 34). The estimates of the

parameters are almost identical to Cox’s, but the baseline hazard is

smooth.
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Royston-Parmar Models

We now consider the Royston-Parmar (2002) family of models
based on transformations of the survival function. Start from a
standard proportional hazards model and take log-log to obtain

log(− log(S(t|x))) = log(− log(S0(t))) + x ′β

Starting from a proportional odds model and taking logits we get

logit(S(t|x)) = logit(S0(t)) + x ′β

A generalization uses the Aranda-Ordaz family of links

g(S0(t)) = log(
S0(t)−θ − 1

θ
)

which includes the logit when θ = 1 and approaches the log-log as
θ → 0. Interpretation is difficult in the general case.

The family is completed with the probit link to include all standard
links for binary data.
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Royston-Parmar (continued)

What about the baseline survival? They model it using a natural
cubic spline on log-time with df-1 internal knots (at quantiles).
With one df (no knots) the spline is linear and the probit, logit and
c-log-log links lead to log-normal, log-logistic and Weibull models.

The method is implemented in Stata’s stpm2 and R’s flexsurv.

For the recidivism data I fitted
Royston-Parmar models using the
probit, logit, and c-log-log scales. I
also let the θ parameter free. In all
cases I used three df, leading to
internal knots at the terciles.

Model logL

Probit −1570.07
PH −1577.67
PO −1568.88
θ −1566.66

The estimated value of θ is 2.14. The evidence suggests that
proportional odds fit better than proportional hazards. AIC would
accept freeing θ because it reduces the deviance by 4.44, but the
parameters are not directly interpretable.
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Discrete Survival

Consider now the discrete case, where the event of interest can
only occur at times t1 < t2 < . . . < tm, usually the integers
0,1,2,... My canonical example is waiting time to conception
measured in menstrual cycles.

The discrete survival function or probability of surviving up to ti is

Si = Pr{T > ti}, i = 1, . . . ,m

The discrete density function or probability of failing at ti is

fi = Pr{T = ti}, i = 1, . . . ,m

Finally the discrete-time hazard or conditional probability of failure
at ti conditional on survival to that point is

λi = Pr{T = ti |T ≥ ti} =
fi

Si−1
, i = 1, . . . ,m

Note: These are the definitions in K-P. Others define the survival using T ≥ t so that

λi = fi/Si . Both conventions are used, so watch out.
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The Logistic Model

Cox proposed a discrete-time proportional hazards model where

logit(λi (x)) = logit(λi0) + x ′β

In this model the conditional odds of surviving (or failing) the i-th
discrete time are proportional to some baseline odds.

Cox then proposed fitting this model using the partial likelihood, so
β is estimated but λi0 is not.

Allison wrote a very popular paper in 1982 proposing to fit this
model using logistic regression with a separate parameter for each
failure time.

To fit the model you split the data at the discrete failure times and
treat the resulting records as independent Bernoulli observations.
The proof follows the same lines as the equivalence between PWE
and Poisson regression.
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The Complementary Log-Log Model

An alternative discrete-time model uses the complementary log-log
transformation

log(− log(λi (x))) = log(− log(λi0)) + x ′β

This model results from grouping data from a continuous-time
proportional hazards model, as we noted in the GLM course.

To see this point write S(t|x) = S0(t)e
x′β

as in continuous time
and note that S0(t) =

∏
i :ti≤t(1−λi0) with grouped data to obtain

λi (x) = 1− (1− λi0))e
x′β

a relationship that is linearized by c-log-log.

Kalbfleish and Prentice (2002, p. 47) note that this is the uniquely
appropriate model for grouped continuous-time data.
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Discrete Models and Partial Exposure

Care must be exercised with partial exposure if you are using a
discrete model with grouped continuous-time data.

Consider two contraceptors, one who is lost

to follow up at 21 months and one who

discontinues at 15 months, but you group

by year. It is then very common to turn

these two cases into four records as shown

on the right. What’s wrong with this setup?

Id Year Fail

1 1 0
1 2 0
2 1 0
2 2 1

We don’t really know if the first woman survived the second year of use.
The second record should be deleted, effectively censoring the case at the
end of the first year, see “reduced sample” in Cox and Oakes.

Less obviously, it is not clear that the failure should count, because we

may not know if the second woman would have been observed throughout

the second year had she not discontinued. Why is this a problem? The

first woman could have failed before she was lost to follow up!
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The Recidivism Data

The recidivism data are well-suited for discrete analysis because the data

were collected retrospectively and everyone is potentially exposed for a

full five years with no censoring. We focus on years one to five.

In the computing logs I compare three models, continuous PWE, and

discrete c-log-log and logit. Here’s a graphic summary of coefs:
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The results of PWE and c-log-log are indistinguishable, while logit is a bit

different, reflecting odds ratios rather than relative risks. The annual

hazard is just 8%, so odds and hazards are not too different.
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Current Status Survival

Retrospective reports of breastfeeding duration typically show
substantial heaping at multiples of 12, as in Bangladesh in 1976
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The figure on the right ignores reported duration and simply shows the
proportion still breastfeeding by current age of child, together with a
spline with knots at 12 and 24. There is little evidence of heaping.

All observations here are censored. If a child has been weaned the

duration is less than current age and is left censored. If a child is still

breastfeeding the duration is at least the current age and is right

censored. Yet we can estimate the survival curve!
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Introduction

We now turn to multiple causes of failure in the framework of
competing risks models. IUD users, for example, could become
pregnant, expel the device, or request its removal for personal or
medical reasons.

Competing risks pose three main analytic questions of interest

1 How covariates relate to the risk of specific causes of failure,
such as IUD expulsion

2 Whether people at high risk of one type of failure are also at
high risk of another, such as accidental pregnancy

3 What would survival look like if a cause of failure could be
removed, for example if we could eliminate expulsion

It turns out we can answer question 1, but question 2 is essentially
intractable with single failures, and 3 can only be answered under
strong and wholly untestable assumptions.
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Cause-Specific Risks

Let T denote survival time and J represent the type of failure,
which can be one of 1, 2, . . . ,m.

We define a cause-specific hazard rate as

λj(t) = lim
dt↓0

Pr{T ∈ [t, t + dt), J = j |T ≥ t}
dt

the instantaneous conditional risk of failing at time t due to cause
j among those surviving to t.

With mutually exclusive and collectively exhaustive causes the
overall hazard is the sum of the cause-specific risks

λ(t) =
m∑

j=1

λj(t)

This result follows directly from the law of total probability and
requires no additional assumptions.
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Cumulative Hazard and Survival

We can also define a cause-specific cumulative hazard

Λj(t) =

∫ t

0
λj(u)du

which obviously adds up to the total cumulative hazard Λ(t).

It may also seem natural to define the function

Sj(t) = e−Λj (t)

but Sj(t) does not have a survival function interpretation in a
competing risks framework without strong additional assumptions.

Obviously
∏

Sj(t) = S(t), the total survival. This suggests
interpreting Sj(t) as a survival function when the causes are
independent, but as we’ll see this assumption is not testable.

Demographers call Sj(t) the associated single-decrement life table.
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Cause-Specific Densities

Finally, we consider a cause-specific density function which
combines overall survival with a cause specific hazard:

fj(t) = lim
dt↓0

Pr{T ∈ [t, t + dt), J = j}
dt

= λj(t)S(t)

the unconditional rate of type-j failures at time t. By the law of
total probability these densities add up to the total density f (t)

In order to fail due to cause j at time t one must survive all causes
up to time t. That’s why we multiply the cause-specific hazard
λj(t) by the overall survival S(t).

Our notation so far has omitted covariates for simplicity, but
extension to covariates is straightforward. With time-varying
covariates, however, a trajectory must be specified to obtain the
cumulative hazard or survival.
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The Incidence Function

Another quantity of interest is the cumulative incidence function
(CIF), defined as the integral of the density

Ij(t) = Pr{T ≤ t, J = j} =

∫ t

0
fj(u)du

In words, the probability of having failed due to cause j by time t.

A nice feature of the cause-specific CIFs is that they add up to the
complement of the survival function. Specifically

1− S(t) =
m∑

j=1

Ij(t)

which provides a decomposition of failures up to time t by cause.

The CIF is preferred to Sj(t) because it is observable, while the
latter “has no simple probability interpretation without strong
additional assumptions” (K-P, 2002, p. 252.)
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Non-Parametric Estimation

Let ti denote the failure or censoring time for observation i and let
dij = 1 if individual i fails due to cause j at time ti . A censored
individual has dij = 0 for all j .

The Kaplan-Meier estimate of overall survival is obtained as usual

Ŝ(t) =
∏

i :tj≤t
(1− di

ni
)

where di =
∑

j dij is the total number of failures at ti and ni is the
number of individuals at risk just before ti .

The Nelson-Aalen estimate of the cumulative hazard of failure due
to cause j is

Λ̂j(t) =
∑

i :ti≤t

dij
ni

a sum of cause-specific failure probabilities. This estimate is easily
obtained by censoring failures due to any cause other than j
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Estimating the CIF

What you should not do is calculate a Kaplan-Meier estimate
where you censor failures due to all causes other than j . You’ll get
an estimate, but it is not in general a survival probability.

What you can do is estimate the cumulative incidence function

Îj(t) =
∑

i :ti≤t
Ŝ(ti )

dij
ni

using KM to estimate the probability of surviving to ti and dij/ni
for the conditional probability of failure due to cause j at time ti .

Pointwise standard errors of the CIF estimate can be obtained
using the delta method, but the derivation is more complicated
than in the case of Greenwood’s formula.

8 / 22 Germán Rodŕıguez Pop 509



Supreme Court Justices

In the computing logs we study how long Supreme Court Justices
serve, treating death and retirement as competing risks. The nine
current justices are censored at their current (updated) length of
service.

The graphs below show the Kaplan-Meier survival curve and the
cumulative incidence functions for death and retirement
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The median length of service is 16.5 years. The CIF plots have
similar shapes, and indicate that about half the justices leave by
death and the other half retire.
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Supreme Court Justices (continued)

I like to stack these plots, taking advantage of the fact that
1− S(t) =

∑
j Ij(t), so we can see at a glance the status of the

justices by the years since they were appointed.
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We now turn to regression models to see how these probabilities
vary by age and period.
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Cox Models for Competing Risks

A natural extension of proportional hazard models to competing
risks writes the hazard of type-j failures as

λj(t|x) = λ0je
x ′βj

where λ0j is the baseline hazard and ex
′βj the relative risk, both for

type-j failures.

The baseline hazard may be specified parametrically, for example
using a Weibull or Gompertz hazard, or may be left unspecified, as
we did in Cox models, which focus on the relative risks.

The most remarkable result is that these models may be fitted
using the techniques we already know! All you do is treat failures
of cause j as events and failures due to any other cause as
censored observations.

The next two slides justify this remark.

11 / 22 Germán Rodŕıguez Pop 509

Parametric Likelihoods for Competing Risks

The parametric likelihood for failures of type j in the presence of
all other causes has individual contributions given by

dij log λj(ti |x)− Λ(ti |x)

where I assumed for simplicity that observation starts at zero.

The cumulative hazard for all causes is a sum of cause-specific
hazard, so we can write

dij log λj(ti |x)− Λj(ti |x)−
∑

k 6=j

Λk(ti |x)

If the hazards for the other causes involve different parameters they
can be ignored. What’s left is exactly the parametric likelihood we
would obtain by censoring failures due to causes other than j .

The cause-specific hazards can then be used to estimate overall
survival and cause-specific incidence functions.
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Partial Likelihood for Competing Risks

The construction of a partial likelihood follows the same steps as
before. We condition on the times at which we observe failures of
type j and calculate the conditional probability of observing each
failure given the risk set at that time. With no ties this is

λ0j(ti )e
x ′i βj

∑
k∈Ri

λ0j(ti )e
x ′kβj

=
ex

′
i βj

∑
k∈Ri

ex
′
kβj

Once again the baseline hazard cancels out and we get an
expression that depends only on βj . Moreover, this is exactly the
same partial likelihood we would get by treating failures due to
other causes as censored observations.

The hazards in the model reflect risks of failures of one type in the
presence of all the other risks, so no assumption of independence is
required. It is only if you want to turn them into counterfactual
survival probabilities that you need a strong additional assumption.
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Cox Models for the Supreme Court

In the computing logs I fit Cox models to estimate age and period
effects on Supreme Court tenure, using simple log-linear
specifications. Here’s a summary of hazard ratios for each cause.

Predictor All Death Retire

Age 1.084 1.071 1.106
Year 0.994 0.989 0.999

The risk of leaving the court is 8% higher for every year of age
and about half a percent lower per calendar year

The risk of death is about 7% higher per year of age and has
declined just over one percent per calendar year

The risk of retirement is about 10% higher per year of age
and shows essentially no trend by year of appointment

Can we turn these estimates into meaningful probabilities? Yes!
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Incidence Functions from Cox Regression

In the computing logs I use the hazards of death and retirement to
estimate cumulative incidences of death and retirement by tenure.
The figure below shows the CIF of death for justices appointed at
age 55 in 1950 and 2000.
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The probability of dying while serving in the court has declined
from 32.8% to 22.6% over the last 50 years, largely as a result of
declines in mortality with no trend in retirement.
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The Fine-Gray Model

Fine and Gray (1999) proposed a competing risks model that
focuses on the incidence function for events of each type.

Let Ij(t|x) denote the incidence function for failures of type j ,
defined as

Ij(t|x) = Pr{T ≤ t, J = j |x}
the probability of a failure of type j by time t given x .

The complement or probability of not failing due to that cause can
be treated formally as a survival function, with hazard

λ̄j(t|x) = − d

dt
log(1− Ij(t|x)) =

fj(t)

1− Ij(t)

We follow Fine-Gray in calling this a sub-hazard for cause j , not to
be confused with the cause-specific hazard λj(t|x).
This hazard is a bit weird (the authors say “un-natural”) because
the denominator reflects all those alive at t or long since dead of
other causes.
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The Fine-Gray Model (continued)

They then propose a proportional hazards model for the sub-hazard
for type j , writing

λ̄j(t|x) = λ̄0j(t)ex
′βj

where λ̄0j(t) is a baseline sub-hazard and ex
′βj a relative risk for

events of type j .

The model implies that the incidence function itself follows a glm
with complementary log-log link

log(− log(1− Ij(t|x))) = log(− log(1− Ij0(t))) + x ′βj

where Ij0(t) is a baseline incidence function for type-j failures.

In the end Fine and Gray argue that their formulation is just a
convenient way to model the incidence function and I agree.
Because the transformation is monotonic, a positive coefficient
means higher CIF, but ascertaining how much higher requires
additional calculations.

17 / 22 Germán Rodŕıguez Pop 509

The Fine-Gray Results for Supreme Court

In the computing logs I fit the Fine-Gray model to the Supreme
Court data, treating the risk of death and retirement as competing
risks.

The table below shows the estimated age and year effects on the
sub-hazard ratio (SHR) of death. I show exponentiated coefficients
and a Wald test.

Predictor SHR z

Age 1.0074 0.42
Year 0.9916 -3.62

The cumulative incidence of death does not vary with age at
appointment beyond what could be expected by chance, but it has
declined with year of appointment with a significant linear trend.

To understand the magnitude of these effects we need to translate
the sub-hazard ratios into something easier to understand, namely
predicted cumulative incidence.
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The Fine-Gray CIF for Supreme Court

In the computing logs I show how to obtain predicted CIF curves
“by hand”, so you can see exactly how it is done.

Here are the estimated CIF for death for justices appointed at age
55 in 1950 and 2000
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We estimate that the probability of dying in the court for justices
appointed at age 55 has declined from 31.6% to 22.0% over the
last 50 years. The results are very similar to the Cox estimates,
and coincide in estimating a decline of ten percentage points in 50
years.
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The Identification Problem

A useful framework for understanding competing risks introduces
latent survival times T1,T2, . . . ,Tm representing the times at
which failures of each type would occur, with joint distribution

SM(t1, . . . , tm) = Pr{T1 > t1, . . . ,Tm > tm}
The problem is that we only observe the shortest of these and its
type: T = min{T1, . . . ,Tm} and J : T = Tj .

To be alive at t all potential failure times have to exceed t, so the
distribution of the observed survival time is

S(t) = SM(t, t, . . . , t)

Taking logs and partial derivatives we obtain the cause-specific
hazards

λj(t) =
∂

∂tj
log SM(t, t, . . . , t)

These two functions can be identified from single-failure data, but
the joint survival function cannot.
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The Marginal Distributions

The marginal distribution of latent time Tj is given by

S∗j (t) = Pr{Tj > t} = SM(0, . . . , 0, t, 0, . . . , 0)

and represents how long one would live if only cause j operated.

The hazard underlying this survival function is

λ∗j (t) = − d

dt
log S∗j (t) = − ∂

∂t
log SM(0, . . . , 0, t, 0, . . . , 0)

and represents the risk of failure if j was the only cause operating.

These functions are not identified. But if T1,T2, . . . ,Tm are
independent then

S∗j (t) = Sj(t) and λ∗j (t) = λj(t)

The assumption of independence, however, cannot be verified!
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Illustrating the Identification Problem

In the notes I provide an analytic example involving two bivariate survival
functions which produce the same observable consequences, yet the
latent times are independent in one and correlated in the other.

An alternative approach uses simulation to illustrate the problem:

Generate a sample of size 5000 from a bivariate standard log-normal
distribution with correlation ρ = 0.5. (The underlying normals have
means zero and s.d.’s one.) Let’s call these variables t1 and t2.

Set the overall survival time to t = min(t1, t2). Censoring is
optional. Verify that the Kaplan-Meier estimate tracks S(t, t).

Compute a Kaplan-Meier estimate treating failures due to cause 2
as censored. Verify that this differs from the Kaplan-Meier estimate
based on t1, which tracks S(t, 0). Unfortunately, t1 is not observed.

Hint: To generate bivariate normal r.v.’s with correlation ρ make

Y1 ∼ N(0, 1) and Y2|y1 ∼ N(ρy1, 1− ρ2).
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Introduction

This week we consider survival models with a random effect
representing unobserved heterogeneity of frailty.

Topics for discussion include

Subject-specific hazards and survival

Population-average hazards and survival

Frailty distributions, including gamma and inverse Gaussian

The identification problem, how different individual hazards
lead to the same population hazard

The inversion formula, how to find an individual hazard
consistent with a given population hazard

Models with covariates, how unobserved heterogeneity is
confounded with non-proportionality of hazards

Next week we continue with shared frailty models.
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Subject-Specific Hazard and Survival

A popular model introduced by Vaupel et al. (1979) assumes that
the hazard for an individual at time t is

λ(t|θ) = λ0(t)θ

where λ0(t) is a baseline individual hazard and θ is a random effect
representing the individual’s frailty.

This is just like a proportional hazards model, but the relative risk
θ is not observed. We take E (θ) = 1 so the baseline applies to the
average person.

The survival function for an individual has the same form as in PH
models

S(t|θ) = S0(t)θ

where S0(t) is the baseline survival.

These functions represent the subject-specific or conditional hazard
and survival.
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Population-Average Hazard and Survival

To obtain the unconditional survival we need to integrate out the
unobserved random effect. If frailty has density g(θ) then

S(t) =

∫ ∞

0
S(t|θ)g(θ)dθ

This is often called the population-average survival function, and
has the great advantage of being observable.

To obtain the unconditional hazard we take negative logs to get a
cumulative hazard and then take derivatives. This leads to the
remarkable result

λ(t) = λ0(t)E (θ|T ≥ t)

The population-average hazard is the baseline hazard times the
expected frailty of survivors to t.

Please see the notes for the proof.
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Gamma Frailty

To proceed further we need to specify the distribution of frailty.

A convenient choice is the
gamma distribution

g(θ) = θα−1e−βθβα/Γ(α)

which has mean E (θ) = α/β
and var(θ) = α/β2.
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To get a mean of one we take α = β = 1/σ2.

The unconditional survival and hazard are then

S(t) =
1

(1 + σ2Λ0(t))1/σ2 and λ(t) =
λ0(t)

1 + σ2Λ0(t)

These results let us go from individual to population hazards. See
the notes for the proof and a connection with Laplace transforms.
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Gamma Mixtures of Exponentials

Example. If the hazard is constant for each individual and frailty is
gamma then the population-average hazard is

λ(t) =
λ

1 + σ2λt

and approaches zero as t →∞. An example with σ2 = 1 follows.
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Selection is faster at higher risk and the observed hazards are no
longer proportional.
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Expected Frailty of Survivors

When frailty is gamma with mean one and variance σ2 the
distribution of frailty among survivors to t is also gamma, with

E (θ|T ≥ t) =
1

1 + σ2Λ0(t)
and var(θ|T ≥ t) =

σ2

[1 + σ2Λ0(t)]2

Verify that the mean follows the general result given earlier.
Using this result we can plot the evolution of frailty over time
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going from (1,0.5) to (0.45,0.10) at 25 when λ0 = 1.
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Inverse Gaussian Frailty

Another distribution that leads to an explicit solution is the inverse
Gaussian or first passage time in Brownian motion.

The density can be written as

g(θ) =

√
γ

2π
θ3/2e

− γ

2µ2θ
(θ−µ)2

where µ is the mean and 1/γ
the variance.
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Hougaard (1984) showed that the expected frailty of survivors
under inverse Gaussian heterogeneity is

E (θ|T ≥ t) =
1

[1 + 2σ2Λ0(t)]1/2

The population hazard follows directly from that. Please refer to
the notes for the population survival.
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Frailty Families

You might have noticed a certain resemblance between the
expected frailty of survivors under these two models. Write

E (θ|T ≥ t) =
1

[1 + σ2

k Λ0(t)]k

and k = 1 gives the mean under gamma frailty while k = 1/2 gives
the mean under inverse Gaussian frailty. Is this true for other k?

Hougaard (1986) proved that this formula is valid for any k < 1,
yielding a family based on stable laws including inverse Gaussian.

Aalen (1988) extended it to k > 1 assuming that frailty has a
compound Poisson distribution (sum of a Poisson-distributed
number of gammas) which includes a group with zero frailty.

Most applications, however, consider only gamma and inverse
Gaussian frailty.
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The Inversion Formula for Gamma

Less well-known is the fact that we can invert these formulas to go
back from the population to the individual hazard.

Under gamma frailty with population-average hazard λ(t) the
subject-specific hazard has baseline

λ0(t) = λ(t)eσ
2Λ(t)

a result easily verified. For the proof please see the notes.

Example. Suppose the observed population hazard is constant, so
λ(t) = λ. If frailty is gamma with variance σ2 the individual
hazard has baseline

λ0(t) = λeσ
2λt

which we recognize as a Gompertz hazard.
Thus, an exponential distribution can be characterized as a gamma
mixture of Gompertz distributions.
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Some Applications of the Inversion Formula

These results have many applications. For example

In the U.S. blacks have higher mortality than whites at most
ages, but the relationship is reversed after age 70 or so. Two
competing theories are selection and bad data. The inversion
formula allows determining the extent to which selection could
explain the cross-over.

Many studies find that the effect of education on mortality
becomes weaker at older ages, even though some theories
would lead us to expect the opposite. Zajacova et al. (2009)
use the inversion formula to show how frailty can bias the
effect downwards and produce a declining population hazard
ratio even if the subject-specific effect increases with age.

In both cases you start with observed hazards for two or more
groups and then use the inversion formula to find compatible
subject-specific hazards.
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The Inversion Formula for Inverse Gaussian

The inversion formula is also tractable for inverse Gaussian
heterogeneity with variance σ2. If the population-average hazard is
λ(t) the subject-specific hazard has baseline

λ0(t) = λ(t)(1 + σ2Λ(t))

Example: Let’s use this result to write the exponential distribution
as an inverse Gaussian mixture of something else. If λ(t) = λ then

λ0(t) = λ+ σ2λ2t

a hazard that rises linearly with time.

Thus, the exponential distribution can also be characterized as an
inverse Gaussian mixture of linear hazards.
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The Identification Problem

You may suspect by now that we have a serious identification
problem. When we see a constant hazard at the population level
the individual could have

1 a constant hazard, if the population is homogeneous

2 a linearly increasing hazard if the population has inverse
Gaussian heterogeneity

3 an exponentially increasing hazard if the population has
gamma heterogeneity

Moreover, options 2 and 3 could have any variance σ2 > 0!

These results extend to models with covariates. Why do we care?
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The Omitted Variable Bias

An important consequence of unobserved heterogeneity is that omitting a
predictor in a hazard model introduces a bias even if the omitted variable
is uncorrelated with other predictors. Even in randomized experiments!

Suppose x1 and x2 are uncorrelated indicator variables with 1/4 in each
combined category. Survival is exponential. The baseline hazard is one,
x1 doubles it and x2 triples it. But x2 is not observed. What do we see?

Hazards are

X2

X1 0 1

0 1 3
1 2 6

x1=0

x1=1

1
2

3
4
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za
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0 .5 1
time

The population hazard in each category of x1 is not constant, and the

effect of x1 is no longer proportional.
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Correcting for Unobserved Heterogeneity

In the hope of “correcting” this bias some analysts add a random
frailty effect to regression models, often by assuming a parametric
hazard and a distribution for the random effect.

Heckman and Singer (1984) found that parameter estimates could
be sensitive to assumptions about the distribution of frailty, and
proposed a discrete mixture model, combining a non-parametric
maximum likelihood (NPML) estimate of the frailty distribution
with a parametric baseline hazard.

Trussell and Richards (1985) found that estimates obtained using
the Heckman-Singer procedure were also very sensitive to the
parametric form assumed for the hazard, and note that often we
lack refined theories on which to base the choice.

Unfortunately we can’t estimate both the baseline hazard and the
mixing distribution non-parametrically. Theory and experience
suggest that the choice of hazard is more critical.
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Identification Problem with Covariates

Suppose you find that an exponential model fits the data well:

λ(t|x) = eα+x ′β

A referee complains that you haven’t corrected for unobserved
heterogeneity. You add gamma frailty and come up with the model

λ(t|x , θ) = θeα+x ′β+σ2teα+x′β

an accelerated failure time model with a Gompertz baseline.
But you could have added inverse Gaussian frailty to obtain

λ(t|x , θ) = θeα+x ′β(1 + σ2eα+x ′βt)

a non-proportional hazards model with a linear baseline.
These models are identical. Which one is correct? What’s σ2?

Adding a random effect greatly extends the range of Cox models.
Just don’t think you got the one true hazard to rule them all.
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Introduction

Our final topic is multivariate survival analysis, where we have
multiple observable outcomes. Areas of application include

Series of events, such as birth intervals or spells of
unemployment, where each individual can experience one or
more events in succession

Kindred lifetimes, such as survival of husband and wife, or
survival of children in the same family, where we have related
individuals experiencing events

Competing risks, where each individual can experience one of
several types of events, although the models here are more of
conceptual than practical interest

Event history models, involving transitions among different
states, for example from single to cohabiting or married, from
cohabiting to married or separated, and so on.

We provide some basic definitions and discuss shared frailty models.
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Bivariate Survival

We start with two survival times T1 and T2. The joint survival is

S12(t1, t2) = Pr{T1 ≥ t1,T2 ≥ t2}

Here S12(t, t) is the probability that neither unit has failed by t.

The conditional survival comes in two variants

S1|2(t1|T2=t2) = Pr{T1 ≥ t1|T2 = t2}

which conditions on unit 2 failing at t2, and

S1|2(t1|T2≥t2) = Pr{T1 ≥ t1|T2 ≥ t2}

which conditions on unit 2 surviving to just before t2.

We also have the marginal survival functions we already know.
If T1 and T2 are independent then the joint survival is the product
of the marginals.
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Bivariate Hazards

The joint hazard function is defined as

λ12(t1, t2) = lim Pr{T1 ∈ [t1, t1+dt),T2 ∈ [t2, t2+dt)|T1 ≥ t1,T2 ≥ t2}/dt2

the instantaneous rate of failures at t1 and t2 given that the units
had survived to just before t1 and t2.

The conditional hazard also comes in two variants

λ1|2(t1|T2=t2) = lim Pr{T1 ∈ [t1, t1 + dt)|T1 ≥ t1,T2 = t2}/dt

given that unit 2 failed at t2, and

λ1|2(t1|T2≥t2) = lim Pr{T1 ∈ [t1, t1 + dt)|T1 ≥ t1,T2 ≥ t2}/dt

given that unit 2 survived to just before t2.
The two types of conditional hazard together completely determine
the joint distribution, see Cox and Oakes (1975).

Finally we have the marginal hazards we already know. If T1 and
T2 are independent the joint hazard is the sum of the marginals.
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Frailty Models

A popular approach to modeling multivariate survival is to assume
the existence of a shared random effect θ such that T1 and T2 are
independent given θ:

S12(t1, t2|θ) = S1(t1|θ)S2(t2|θ)

Typically we assume that frailty acts multiplicatively on the
conditional hazard, so that

λj(t|θ) = λ0j(t)θ and Sj(t|θ) = S0j(t)θ

for some baseline hazard and survival functions with j = 1, 2.

Usually the baseline hazard is the same for all failure times. This
makes most sense when the events are exchangeable, for example
spells of unemployment. Otherwise covariates may be used, for
example to distinguish risks for males and females.
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Frailty Distributions

A common assumption about shared frailty is that it follows a
gamma distribution. If frailty is gamma with mean one and
variance σ2 the joint survival function is

S12(t1, t2) =

(
1

1 + σ2Λ01(t1) + σ2Λ02(t2)

)1/σ2

An alternative assumption that also yields an explicit solution for
the survival function is inverse Gaussian frailty.

A third option is to use a non-parametric estimator of the frailty
distribution, which leads to a discrete mixture where θ takes values
θ1, . . . θk with probabilities π1, . . . , πk adding to one. In this case

S12(t1, t2) =
k∑

j=1

e−θj [Λ01(t1)+Λ02(t2)]πj

see Laird (1978) and Heckman and Singer (1984).
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Clayton’s Model

Clayton (1978) proposed a bivariate survival model where the two
conditional hazards for T1 given T2 = t2 and given T2 ≥ t2 are
proportional:

λ1|2(T1|t2 = t2)

λ1|2(T1|t2 ≥ t2)
= 1 + φ

In words, the risk for unit 1 at time t1 given that the other unit
failed at t2 is 1 + φ times the risk at t1 given that the other unit
survived to t2.

A remarkable result is that this model is exactly equivalent to a
multiplicative frailty model with gamma-distributed shared frailty
and σ2 = φ.

An important implication of this result is that shared frailty models
are clearly identified, as the choice of frailty distribution has
observable consequences.

It also gives a new interpretation to σ2.
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Oakes’s Interpretation

Oakes (1982) shows that φ (and thus σ2) is closely related to a
measure of ordinal association known as Kendall’s τ (tau).

Given a bivariate sample of data on (T1,T2), Kendall considers all
pairs of observations, calls the pair concordant if the rank order is
the same and discordant otherwise, and computes

τ =
concordant pairs− discordant pairs

number of pairs

Oakes extends this to censored data by focusing on pairs where the
order can be established, and shows that under gamma frailty

E (τ̂) =
φ

φ+ 2

which provides a nice justification for interpreting φ (and σ2) as a
measure of ordinal association between kindred lifetimes.
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Multivariate Extensions

These ideas extend directly to the multivariate case, please refer to
the notes for details. A few important facts:

Clayton shows that with multivariate failures and gamma frailty
the ratio of the risk for one unit when m have failed at given
durations, to the risk if all had survived to the same durations is

1 + mφ

which reduces to 1 + φ in the bivariate case, still with φ = σ2.

Oakes shows that we can interpret the ratio

φ

2 + φ

as a measure of association between any two of the m failure times.

Shared frailty models allow only for positive association between
kindred lifetimes, but cover the entire range from independence to
maximum possible positive association.
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Software Notes

Stata’s streg fits parametric proportional hazard models with
gamma or inverse Gaussian shared frailty. PWE models with
log-normal or gamma frailty can also be fit using xtpoisson. Cox
models with gamma or inverse Gaussian frailty can be fitted with
stcox, but in my experience this command is very slow.

In R the packages frailtypack and the newer parfm have
functions to fit parametric models with shared frailty. PWE models
with log-normal frailty can also be fit via the Poisson trick with
lme4. The coxph function lets you add a frailty term to a
model formula, but a better approach is Therneau’s coxme, which
includes the coxme function to fit mixed Cox survival models with
Gaussian random effects.

The computing logs illustrate shared frailty models using a PWE
model in Stata and a Cox model in R.
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Child Mortality in Guatemala

Our illustrative example uses data on child mortality in Guatemala, first

analyzed by Pebley and Stupp (1987) using a PWE model, and then by

Guo and Rodŕıguez (1992) adding gamma frailty at the family level.

The table on the right summarizes
parameter estimates. See the
computing logs for variable
definitions and other details.

The exponentiated coefficients
represent subject-specific hazard
ratios. The only change of note is
the coefficient for previous child
death, which goes from 10.3%
excess risk to 7.3% lower risk.

Clearly this variable was acting as a

proxy for unobserved family effects,

now captured by the random effect.

----------------------------------

Variable | pwe gamma

-------------+--------------------

_t |

a0 | 0.338 0.371

a1to5 | 0.025 0.027

a6to11 | 0.030 0.034

a12to23 | 0.018 0.020

a24up | 0.003 0.004

mage | 0.861 0.856

mage2 | 1.003 1.003

borde | 1.064 1.059

pdead | 1.103 0.927

p0014 | 1.714 1.774

p1523 | 0.885 0.908

p2435 | 0.772 0.796

p36up | 0.676 0.690

i011a1223 | 2.247 2.210

i011a24p | 4.934 4.960

i1223a24p | 1.076 1.077

-------------+--------------------

ln_the |

_cons | 0.214

----------------------------------
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The Variance of Frailty

The estimated variance of frailty is 0.214. This implies modest
association between the lifetimes of siblings, a rank correlation of
0.097, but translates into substantial Clayton hazard ratios.

The quartiles of the estimated
frailty distribution are 0.662,
0.930 and 1.262. Thus,
families with frailty at Q1
have 29% lower risk, and
those in Q3 have 36% higher
risk, than families at median
frailty.
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Testing significance of the variance requires care because the null
hypothesis is on a boundary of the parameter space. The statistic
can be treated as a 50:50 mix of χ2

0 and χ2
1, or conservatively as

χ2
1. Here we get 3.3, which is clearly significant.
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Observed and Unobserved Effects

It is interesting to compare the magnitude of the estimated
unobserved family effects with the relative risks corresponding to
observed characteristics of the child and mother.

The figure on the right
shows the estimated density
of the risks at birth. The
quartiles are 0.799, 0.911
and 1.070. Thus, children
in Q1 have 12.3% lower,
and those in Q3 have
17.5% higher risk than
those at the median.
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Clearly the unobserved family effects are larger than the observed
child and family effects.

See the computing logs for details of the calculations. For the plot
I scaled the hazards to have mean one.
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Subject-Specific and Population Average Probabilities

We can translate the results into a more convenient scale by
calculating subject-specific and population average probabilities. I
use preceding birth interval as an example.

These are subject-specific
probabilities of infant and
child death for a 26-year old
mother having a 2nd child,
who has not experienced a
child death before, has a
preceding birth interval of one
or three years, and her frailty
is in each quartile.
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I also show the corresponding population average probabilities.
Differences between the average mother and the population
average are modest because selection hasn’t had much time to
operate by ages one and five.
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Marginal and Joint Probabilities

The final calculation concerns the marginal and joint probabilities
of infant and child death for two children in the same family.

It doesn’t make sense to fix the mother’s age at 26 unless she has
twins, so I did the calculations for a second birth at age 26 and a
third birth at age 29. Here are the probabilities for age five

2nd 3rd Child
Child died survived All

died .0090 .0765 .0855
survived .0793 .8351 .9144

All .0883 .9116 1.000

The odds-ratio for this 2 by 2 table is 1.239, so the odds of one
child dying by age five are 23.9% higher if the other child died by
age five. (Also, the joint survival is slightly higher than the product
of the marginal probabilities.)

15 / 16 Germán Rodŕıguez Pop 509

Log-Normal Frailty

In the computing logs I also fit this model using log-normal frailty
via the equivalence with Poisson regression. The estimates of the
parameters are quite robust to the choice of frailty distribution.

A nice feature of log-normal frailty is that we can write the model
as

log λ(t|x , θ) = log λ0(t) + x ′β + σz

where z is standard normal and θ = eσz . This leads to interpreting
σ as just another coefficient. In our example σ̂ = 0.442, so a one
st.dev. increase in log-frailty is associated with 55.6% higher risk.

The estimated quartiles are Q1=0.742 and Q3=1.348, so these
families have 26% lower and 35% higher risk than families at the
median. The results are very similar to those under gamma frailty.

A disadvantage of log-normal frailty is the need for Gaussian
quadrature to calculate unconditional probabilities.
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