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In this unit we study models for multivariate survival (in the statistical
sense of many outcomes, not just many predictors).

1 Areas of Application

We start by reviewing four main areas of applications of these models.

1.1 Series of Events

One area of interest is processes where each individual may experience a
succession of events. Examples include birth intervals and spells of unem-
ployment.

Because the various events occur to the same individual, the waiting
times will in general not be independent. Some couples tend to have short
birth intervals while others have long ones. Observed covariates such as
contraceptive use may explain some of the association. In general, however,
there will remain some correlation due to unobserved individual traits.

Because the events occur one after the other, it will generally be the case
that only the last interval can be censored. This introduces some simplifica-
tion in estimation. In particular, it makes it possible to study the sequence
using successive conditioning.

To fix ideas consider an example with three intervals. The joint density
of T1, T2 and T3

f123(t1, t2, t3)

can always be written as the product of the marginal of T1, the conditional
distribution of T2 given T1, and the conditional distribution of T3 given T1

and T2:
f1(t1) f2|1(t2|t1) f3|12(t3|t1, t2).
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These two equations are an identity: any joint distribution can be factored
in this way.

A typical contribution to the likelihood function, given the fact that T3

is the only waiting time that can be censored, will look like

f1(t1) f2|1(t2|t1) λ3|12(t3|t1, t2)d3S3|12(t3|t1, t2).

where the last term is, as usual, the conditional survival function for censored
cases and the conditional density for deaths.

As long as we model the conditional distributions using different pa-
rameters, the likelihood will factor into separate components. Typically,
one would model the conditional distributions by introducing the previous
waiting times as covariates, for example we could write the three-equation
model

λ1(t1|x) = λ01(t1)ex′β1

λ2(t2|t1, x) = λ02(t2)ex′β1+s1(t1)

λ3(t3|t1, t2, x) = λ03(t2)ex′β1+s1(t1)+s2(t2)

where s(t) denotes a smooth term on t, such as a smoothing or regression
spline.

My own work on birth intervals (Rodŕıguez et al. 1984) used this ap-
proach. It turns out that only the previous interval turned out to be rele-
vant, so our models were simplified. Some of the advantages of this approach
are

• It is easy, because it breaks down into a series of univariate analyzes.

• It is consistent with sequential decision making, where the actual val-
ues of t1, . . . , tj−1 may affect behavior influencing tj .

On the other hand it has the disadvantage of using separate parameters for
each spell.

1.2 Kindred Lifetimes

A second area where we may use multivariate survival models consists of
related lifetimes, such as the survival of husband and wife, siblings, or other
kin. Following Vaupel I will call these kindred lifetimes. In general there
is reason to believe that these lifetimes are correlated, because of common
unobserved characteristics of the couple (in the case of husband and wife
survival) or the family (in the case of sibling survival).
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An important feature of kindred lifetimes is that any (or all) of the
waiting times may be censored. With three children, for example, you may
observe 8 different patterns of censoring. This means that we cannot adopt
the simple sequential approach outlined earlier for series of events, as we will
often lack the information needed. For example we can’t very well model T2

as a function of T1 when T1 is censored, at least not in the simple way we
have described. Thus, we need a more general approach.

1.3 Competing Risks

We have already encountered a third type of multivariate data in our discus-
sion of competing risks, where T1, T2, . . . , Tk represent latent survival times
to different causes of death.

As noted earlier, estimation of these models is complicated by the fact
that we only observe

T = min{T1, . . . , Tk}

and even this can be censored. Keep in mind, however, that the models that
follow could be used, at least conceptually, in this context.

1.4 Event History Models

The fourth and final type of multivariate data involves transitions among
several types of states. This combines elements of competing risk models
with models for series of events.

Consider for example the analysis of nuptiality. You start in the single
state. From there you can move to cohabiting or married. From cohabiting
you can move to married or to separated. And so on. If you distinguish
separations from marriage or cohabiting as well as widowhood and divorce,
you probably have about 15 possible transitions of interest.

Analysts often study one type of transition, for example age at first
marriage or marriage dissolution. With event history data, however, one
may study the complete process, allowing for inter-dependencies among the
different kinds of transitions. The nature of the data allows conditioning
each move on the entire history of previous moves.

A closely related subject in demography are multi-state models. A lot
of work in that area assumes a homogeneous population with constant tran-
sition rates and independent moves, and emphasizes analytic results, such
as the steady-state proportion in each state. In some ways event history
models are to multi-state models what Cox regression models are to the
traditional life table.
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2 Bivariate Survival Models

We consider first the case of only two survival times, T1 and T2. This section
follows Cox and Oakes (1984, Chapter 10) and Guo and Rodŕıguez (1992).

2.1 Basic Definitions

Interest will focus on the joint survival

S12(t1, t2) = Pr{T1 ≥ t1, T2 ≥ t2}.

Note that S12(t, t) is the probability that both units are alive at t.
We also have the marginal survival function

S1(t1) = Pr{T1 ≥ t1} = S12(t1, 0),

and similarly for t2. If T1 and T2 were independent the joint survival function
would be the product of the marginals.

We might also be interested in the conditional survival function, which
has two variants

S1|2(t1|T2 = t2) = Pr{T1 ≥ t1|T2 = t2},

giving the survival probabilities given that the other unit failed at time t2,
and

S1|2(t1|T2 ≥ t2) = Pr{T1 ≥ t1|T2 ≥ t2},

given that the other unit survived to just before time t2.
Associated with each of these survival functions there will be a cumu-

lative hazard function, which can be obtained by taking minus the log of
the survival function. There will also be a hazard function, which can be
obtained by taking derivatives of the cumulative hazard.

Specifically, we can define the joint hazard function as

λ12(t1, t2) = lim
dt→0

Pr{T1 ∈ [t1, t1 +dt), T2 ∈ [t2, t2 +dt)|T1 ≥ t1, T2 ≥ t2}/dt2.

This is the instantaneous risk that one unit fails at t1 and the other fails at
t2 given that they were alive just before t1 and t2, respectively.

We can also define a marginal hazard,

λ1(t1) = lim
dt→0

Pr{T1 ∈ [t1, t1 + dt)|T1 ≥ t1}/dt.

Under independence, the joint hazard is the sum of the marginal hazards.
Can you prove this result?
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We can also define conditional hazards

λ1|2(t1|T2 = t2) = lim
dt→0

Pr{T1 ∈ [t1, t1 + dt)|T1 ≥ t1, T2 = t2}/dt

which tracks the risk for one unit given that the other failed at t2, and

λ1|2(t1|T2 ≥ t2) = lim
dt→0

Pr{T1 ∈ [t1, t1 + dt)|T1 ≥ t1, T2 ≥ t2}/dt

given that the other unit survived to just before t2.
The cause-specific hazard considered in the context of competing risks

(tracking the risk of death due to cause j among survivors to time t) is a
special case of the latter, namely the case where t1 = t2:

λ1|2(t|T2 ≥ t) = lim
dt→0

Pr{T1 ∈ [t, t + dt)|T1 ≥ t, T2 ≥ t}/dt.

Knowledge of the two types of conditional hazards completely determines a
joint distribution, see Cox and Oakes (1984, p. 157) for an expression linking
the joint density to the conditional hazards.

2.2 Frailty Models

One way to model a joint survival function is to assume the existence of a
random effect θ such that given θ, T1 and T2 are independent. Depending on
the context, θ may represent traits that persist across spells or are common
among kin, and which account for the lack of independence.

In symbols, we can write the assumption of conditional independence as

S12(t1, t2|θ) = S1(t1|θ)S2(t2|θ),

where all survival functions are conditional on θ. Usually the random effect
is assumed to act multiplicatively on the hazard, so that

Si(ti|θ) = S0i(ti)θ

for some baseline survival function S0i(t). Under this assumption the cumu-
lative hazards are

Λi(ti) = θΛ0i(ti)

and the individual hazards are

λi(ti) = θλ0i(ti).
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The conditional joint survival function is then

S12(t1, t2|θ) = S01(t1)θS02(t2)θ

= e−θΛ01(t1)e−θΛ02(t2)

= e−θ(Λ01(t1)+Λ02(t2)).

This is not very useful because θ is not observed. To obtain the uncon-
ditional survival function we need to ‘integrate out’ θ. Suppose that θ has
density g(θ). Then

S12(t1, t2) =
∫ ∞

0
S12(t1, t2|θ)g(θ)dθ

=
∫ ∞

0
e−θ(Λ01(t1)+Λ02(t2))g(θ)dθ,

and we recognize this expression as the Laplace transform of g(θ) evaluated
at s = Λ01(t1) + Λ02(t2). Thus

S12(t1, t2) = Lg(Λ01(t1) + Λ02(t2)).

To make further progress we need to know the distribution of θ.

2.3 Gamma Frailty

Suppose the common or persistent frailty component θ has a gamma distri-
bution with parameters α = β = 1/σ2. The Laplace transform of the gamma
density is L(s) = (β/(β + s))α. Using this result,

S12(t1, t2) =
(

1
1 + σ2Λ01(t1) + σ2Λ02(t2)

) 1
σ2

. (1)

Actual estimation of this model requires some assumption about the baseline
hazards and will be considered in detail further below.

While we are on this subject, it will be useful to write the joint survival
function S12(t1, t2) under gamma frailty as a function of the marginals Si(ti).

We start from the expression for the joint survival and obtain a marginal
by setting one of the t’s to zero, thus

S1(t1) = S12(t1, 0) =
(

1
1 + σ2Λ01(t1)

) 1
σ2

.

We now use this expression to solve for Λ01(t1), or better still σ2Λ01(t1):

S1(t1)σ2
=

1
1 + σ2Λ01(t1)

,
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taking reciprocals and subtracting one on both sides gives

S1(t1)−σ2 − 1 = σ2Λ01(t1),

and using this result on Equation 1 we obtain

S12(t1, t2) = (S1(t1)−σ2
+ S2(t2)−σ2 − 1)−

1
σ2 . (2)

Keep this handy for future reference.

2.4 Non-parametric Frailty

An alternative assumption regarding θ is to treat it as discrete, assuming
values θ1, θ2, . . . , θk with probabilities π1, π2, . . . , πk, where

∑
πj = 1.

Laird (1978) and Heckman and Singer (1982, 1984) show that a non-
parametric maximum likelihood approach to the estimation of g(θ) leads
precisely to this discrete model. Under the foregoing assumptions, the un-
conditional survival function is the finite mixture

S12(t1, t2) =
k∑

j=1

e−θj(Λ01(t1)+Λ02(t2))πj .

Again, estimation of this model requires specifying the baseline hazards
λ0i(t), and will be considered below.

Other distributional assumptions are possible. Are these models identi-
fied? Fortunately yes, as we shall see presently.

2.5 Clayton’s Model

Clayton (1978) proposed a continuous bivariate survival model where the
two conditional hazards for T1 given T2 = t2 and given T2 ≥ t2 are propor-
tional, namely

λ1(t1|T2 = t2)
λ1(t1|T2 ≥ t2)

= 1 + φ. (3)

In words, the risk for unit one at time t1 given that the other unit failed at
time t2 is 1 + φ times the risk for unit one at time t1 given that the other
unit survived to t2.

Think of all families with two children whose second child survived to
age one, say. Separate those families whose second child died shortly after
his or her first birthday. Clearly these families have, on the average, higher
risk that the original pool. In fact, the first child in these families is subject
to 100φ% higher risk, at any given age.
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Note that the hazard ratio 1 + φ is constant over time. Conditioning on
survival (and then death) to age two (instead of age one) in our example
would lead to exactly the same hazard ratio.

The remarkable thing about this model is that it is exactly equivalent
to a multiplicative frailty model with a gamma-distributed random effect,
with φ = σ2.

An important implication of this result is that the model is clearly identi-
fied and can be tested, as it has an observable consequence, namely the fact
that the ratio of two hazards (which are themselves estimable) is constant
over time (something we can verify).

Moreover, this result gives a new interpretation to σ2, the variance of
the random effect. A variance of σ2 means that children who lost a sibling
at age t have a risk (1 + σ2) times the risk of children who had a sibling
survive to age t.

Note back on Equation 2 that as σ2 → 0, S12(t1, t2) approaches the prod-
uct of the marginals, as we would expect under independence. As σ2 →∞,
S12(t1, t2) approaches min{S1(t1), S2(t2)}, which is known as the Fréchet
bound on the maximum possible positive association between two distribu-
tions with given marginals.

In other words, the model covers the entire spectrum from independence
to maximum possible positive association. However, the model cannot ac-
count for negative association.

2.6 Oakes’s Interpretation

Oakes (1982) showed that φ (or σ2) is closely related to a measure of ordinal
association known as Kendall’s τ (tau).

Given a bivariate sample (T11, T12), (T21, T22), . . . , (Tn1, Tn2), Kendall con-
siders all possible pairs of observations. He calls a pair concordant if the first
coordinates have the same rank order as the second coordinates. Otherwise
a pair is discordant. (For example in husband and wife survival two couples
would be concordant if either husband A dies younger than husband B and
wife A dies younger than wife B, or the A’s outlive the corresponding B’s.)
Kendall’s τ is then defined as

τ =
concordant pairs− discordant pairs

number of pairs
.

Unfortunately, when the data are censored we may be unable to calculate
this measure. (For example if husband A died younger than husband B, wife
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A died, and wife B is still alive but has not yet reached the age at which
wife A died, we would not know if the pair is concordant or discordant. )

Oakes has shown that if we restrict the calculation to pairs that can
definitely be classified as either concordant or discordant (for example wife
B is censored but has already outlived wife A), then the expected value of
Kendall’s τ under Clayton’s model is

E(τ̂) =
φ

φ + 2
,

which provides further justification for interpreting φ (or σ2) as a measure
of ordinal association between kindred lifetimes.

There are no known similar interpretations for frailty distributions other
than the gamma. It would be interesting to explore how the ratio of hazards
varies over time for other distributions, such as the inverse Gaussian.

3 Multivariate Extensions

The foregoing ideas extend easily to more than two lifetimes and models
with observed covariates.

3.1 Notation and Definitions

Consider a set of clustered data where

tij = observation time
dij = death indicator
xij = vector of covariates

all for the j-th individual in the i-th group (or cluster).
We assume that given xij and a random effect θi the mi lifetimes in

cluster i, say Ti1, Ti2, . . . , Timi are independent.
Thus, the joint distribution of these lifetimes given θi is the product of

the marginal distributions given θi. Under the multiplicative frailty model,
the marginal hazards satisfy

λij(tij |xij , θi) = θiλ0ij(tij |xij).

Often the covariate effects will be modelled using a proportional hazards
model, so that

λ0ij(tij |xij) = λ0(tij)e
x′

ijβ .
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Combining these two equations we obtain the full model:

λij(tij |xij , θi) = θiλ0(tij)e
x′

ijβ. (4)

In the sections that follow we will often use ti to denote the vector
(ti1, ti2, . . . , timi)

′ of mi survival times for cluster i, and Xi to denote an mi

by p matrix of covariates with one row for the covariates of each unit in the
cluster.

3.2 Gamma Frailty

If the cluster-specific random effects θi have independent gamma distribu-
tions, then the unconditional survival for the mi lifetimes in cluster i is

Si(ti, Xi) =
∫ ∞

0

∏
j

Sij(tij |xij , θi)g(θi)dθi,

which can be solved easily using the Laplace transform, to give

S(ti, Xi) =

(
1

1 + σ2Λ0(ti1)ex′
i1β + . . . + σ2Λ0(timi)e

x′
imi

β

) 1
σ2

.

Alternatively, we can write the joint distribution as a function of the marginals.
In a direct extension of our earlier result for bivariate distributions,

Si(ti|Xi) = (Si1(ti1|xi1)−σ2
+ . . . + Simi(timi |ximi)

−σ2 −mi + 1)−
1

σ2 .

Under a proportional hazards model

Sij(tij |xij) = S0(tij)e
X′

ij
β

.

3.3 Clayton’s Model

Clayton’s characterization extends to the multivariate case. We consider
the risk for a given individual given the survival status of the others to any
given set of ages. Specifically, consider the risk to individual one given that
the others have survived to (if dij = 0) or died at (if dij = 1) ages tij . We
will write this conditional hazard as

λ1(t1|t2, t3, . . . , tm; d2, d3, . . . , dm),

where I have suppressed the group subscript for clarity.
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Consider now a similar hazard given that all other members of the group
survived to the same ages, which in our notation is

λ1(t1|t2, t3, . . . , tm; 0, 0, . . . , 0).

Then under a multiplicative frailty model the ratio of these two hazards is
constant over time and equals

1 + σ2
∑
j

dj .

In the bivariate case this reduces to 1 + σ2 when the other member of the
pair died. In a trivariate case, the risk for the index individual would be
1 + σ2 if one of the other two died and 1 + 2σ2 if both of them died.

To clarify this interpretation think of all families with 3 children where
the second child survives to age one and the third child survives to age two.
These families are subject to the baseline risk. Now consider the subset
where the second child died around age one but the third child was alive at
age two. These families have higher risk, and their risk is 1 + σ2 times the
baseline. There is another subset where the second child was alive at age
one but the third child died around age two. These families also have higher
risk and the relative risk factor is also 1 + σ2. Finally, we have the families
where the second child died around age one and the third child died around
age two. These families have the highest risk; their relative risk factor is
1 + 2σ2.

Note that in this model the death of a child is not assumed to have a
direct effect on the survival of the remaining siblings. Rather, the death of
a child is an indicator that the family has higher than average risk.

3.4 Oakes’s Interpretation

Clearly, σ2/(2 + σ2) can still be interpreted as a measure of association
between the lifetimes of any two members of the group. As in all models
with a single random effect to account for the correlation of three or more
r.v.’s, the association between any two members of the group is the same.

Note that this assumption may not always be reasonable. For example
kids born closer together in time may face more similar risks than those
born farther apart. The model allows independence and maximum positive
correlation, but restricts intermediate cases to equal pairwise association.
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4 Estimation Using the EM Algorithm

The fact that a multiplicative frailty model would be a standard proportional
hazards model–and therefore relatively simple to estimate–if θi was observed,
suggest immediately the possibility of using the EM algorithm. We now show
that this leads to very simple procedures for gamma and for non-parametric
frailty. This section follows closely Guo and Rodŕıguez (1992).

4.1 Gamma Frailty

If θi was observed, the likelihood function would depend on the joint distri-
bution of frailty and the survival times Tij . We can write this in terms of the
density of θi times the conditional distribution of the survival time Tij given
θi. The contribution of the i-th cluster to the complete data log-likelihood
would be

log Li = log g(θi) +
mi∑
j=1

{dij log(θiλij(tij))− θiΛij(tij)}. (5)

The hazard λij(tij) and cumulative hazard Λij(tij) will in general depend on
the covariates xij and the parameters β as well as the baseline hazard. I am
leaving that implicit to focus on the key aspects of the estimation procedure.

The E-step of the algorithm requires finding the expected value of the
complete data log-likelihood, where expectation is taken with respect to the
conditional distribution of θi given the data. Given the structure of log Li,
this reduces to finding the expected value of θi and log θi given (tij , dij) for
j = 1, . . . ,mi.

It turns out that this is not hard at all. Direct integration (like we did
in the univariate case) shows that if the marginal (or prior) distribution of
θi is gamma with parameters α and β (usually α = β = 1/σ2), then the
conditional (or posterior) distribution of θi given the survival experience of
the i-th cluster is also gamma, but with parameters

α∗ = α +
∑
j

dij and β∗ = β +
∑
j

Λij(tij).

Note that α increases by the total number of deaths and β increases by the
total cumulative hazard (or exposure to risk).

The expected value of θi given the data is then

µi = E(θi) =
α∗

β∗
=

α +
∑

j dij

β +
∑

j Λij(tij)
.
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We could rewrite this expression in terms of σ2, the variance of frailty, but
it turns out to be easier to work with α(= β), which may be interpreted as
a precision parameter.

The expected value of log θi when θi has a gamma distribution is well
known, and in this case turns out to be:

ξi = E(log θi) = Ψ(α∗)− logβ∗ = Ψ(α +
∑

dij)− log(β +
∑

Λij(tij)),

where Ψ is the digamma function (the first derivative of the log of the gamma
function, so Ψ(x) = Γ′(x)/Γ(x)).

Let µ̂i and ξ̂i denote the expected values of θi and log θi evaluated at
current parameter estimates. Then the result of the E-step is

Qi = (α− 1)ξ̂i − αµ̂i + α log α− log Γ(α)+
diξ̂i +

∑
j dij log λij(tij)− µ̂i

∑
Λij(tij).

(6)

The first line comes from the density of θi and the second line comes from
the conditional survival likelihood.

The M-step requires maximizing Qi w.r.t. α(= 1/σ2) and the parameters
in λij(tij). This step breaks neatly into two separate problems.

The part of Q =
∑

Qi involving α is

Q1 = (α− 1)
∑

ξ̂i − α
∑

µ̂i + nα log α− n log Γ(α),

where n is the number of clusters. The first derivative is
∂Q1

∂α
=
∑

(ξ̂i − µ̂i) + n(1 + log α−Ψ(α)),

and the second derivative is

∂2Q1

∂α2
= n(

1
α
−Ψ(1)(α)),

where Ψ(1) is the trigamma function. This part can be maximized using
a Newton-Raphson algorithm. Calculation of the gamma, digamma and
trigamma functions can be accomplished using published algorithms. (All
three functions are available in R.)

The part of Q =
∑

Qi involving the remaining parameters is exactly the
same as the log-likelihood for a standard survival model where µ̂i is treated
as an extra relative risk. To see this point note that we can add to Qi the
quantity

∑
dij log µ̂i, which does not depend on unknown parameters. Then

this part becomes

Q2 =
∑

i

∑
j

{dij log(µ̂iλij(tij))− µ̂iΛij(tij)},
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which is a standard survival log-likelihood. For example, if we were using a
proportional hazards model with a piece-wise constant baseline hazard, Q2

would be equivalent to a Poisson log-likelihood.
To summarize, the EM algorithm for this problem involves the follow-

ing steps. Given initial estimates (obtained, for example, by ignoring the
multivariate structure of the data):

1 Estimate the expected value of the random effect θi and of its logarithm
log θi for each cluster. Call these µ̂i and ξ̂i.

2 Obtain new estimates of the parameters by (a) fitting the model using
standard univariate procedures but including µ̂i as a known relative
risk and (b) solving the Newton-Raphson equations for α.

These steps are repeated to convergence. The algorithm is slow, but
extremely robust. It is also comparatively easy to implement, because you
can take advantage of existing code for the univariate model.

4.2 Non-parametric Frailty

The EM algorithm for non-parametric frailty is even simpler. We assume
that a cluster comes from one of K populations representing different levels
of frailty θ1, . . . , θK . Let πk denote the probability that the cluster comes
from the k-th population (or level of frailty), with

∑
πk = 1.

We introduce an indicator variable Zik that takes the value one if the
i-th cluster comes from the k-th population (or level of frailty) and zero
otherwise. Note that Pr{Zik = 1} = πk. If the Zik were observed we
would maximize the complete data log-likelihood, to which the i-th cluster
contributes

log Li =
K∑

k=1

{zik(log πk + log Lik)},

where log Lik denotes the standard log-likelihood given that the level of
frailty is θk, namely

log Lik =
ni∑

j=1

{dij log(θkλij(tij))− θkΛij(tij)},

which of course would depend on some parameters, say β. (Note that for
each cluster only one of the K terms in log Li is non-zero.)

The E-step requires taking the expected value of log Li given the data,
which in turn requires the expected value of the indicator variable Zik. A
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fairly straightforward argument shows that if the prior probability that
Zik = 1 is πk, and given this the likelihood of the data is Lik, then the
posterior probability that Zik = 1 given the data is

ρik = E(Zik|(ti, di)) =
πkLik∑K

r=1 πrLir

.

This follow from Bayes theorem or the definition of conditional probabilities.
You just have to be careful that for some cases we are talking about the prob-
ability of dying at tij while for others (censored) we need the probability of
being alive just before tij . Note that ρjk represents the posterior probability
that a cluster comes from the k-th population (or level of frailty). Let ρ̂ik

denote this posterior probability evaluated at current parameter estimates.
The result of the E-step is then

Qi =
K∑

k=1

ρ̂ik log πk +
K∑

k=1

ρ̂ik log Lik.

Note that the second term is just a weighted average of the log-likelihoods
given that frailty has value θk, with weights given by the posterior proba-
bilities that frailty has value θk.

The M-step requires maximizing Q =
∑

Qi w.r.t. the πk and the pa-
rameters in log Lik, namely the θk and β. Again, this problem breaks down
neatly into two separate problems.

First, maximizing w.r.t. the πk’s gives the explicit solution

π̂k =
1
n

n∑
i=1

ρ̂ik,

or the average of the posterior probabilities. This follows directly from the
multinomial structure of Qi. (You may take derivatives to verify this result,
but remember the restriction

∑
πk = 1. The easiest thing to do is work with

only k − 1 probabilities and write πK = 1
∑K−1

i=1 πk.)
Second, maximizing w.r.t. the θk’s and β is equivalent to maximizing

the standard univariate log-likelihood log Lik with a twist: each observation
contributes to each possible level of frailty with weight equal to its posterior
probability of coming from that population.

To fix ideas suppose you are fitting a model with two levels of frailty (or
two points of support). Then all you have to do is duplicate all observations,
introduce a factor coded 1 for the first copy and 2 for the second (this will
give θ1 and θ2, give weight ρ̂i1 to the first copy and ρ̂i2 = 1 − ρ̂i1 to the
second, and fit as usual. Isn’t that easy?
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These two results apply quite generally to finite mixture models, not just
frailty models; for details see the book by Everitt and Hand (1981).

Note: With gamma frailty we assumed E(θi) = 1. Introducing a similar
restriction in the present context would impose a constraint on the θk’s and
πk’s and would make life more difficult. A much simpler solution is to leave
the θk’s unrestricted and omit a constant from the baseline hazard. After
the model is fit, you can calculate the mean frailty as

θ̄ =
K∑

k=1

π̂kθ̂k,

and then absorb this into the constant. In practice we divide θ̂k by θ̄ to
make the new mean one and obtain results comparable with gamma frailty.

4.3 Further Notes

4.3.1 Non-Parametric Hazards

All the procedures discussed so far require a parametric model for the base-
line hazard, be it exponential, Weibull, log-logistic, or piece-wise exponential
survival.

Clearly it would be nice to have a robust method that, like Cox’s partial
likelihood, could be used to estimate the main parameters of interest, i.e. β
and σ2, without any assumptions about the form of the hazard.

Clayton and Cuzick (1985) have some interesting results along these lines
in a procedure that appears to be closely related to the EM algorithm. I
recommend their excellent paper and the ensuing discussion.

4.3.2 Baseline Hazards

In our discussion we allowed a different baseline hazard for each member of
a cluster, and even a different vector of coefficients β. This makes sense in
the study of series of events, such as birth intervals. In other cases, such as
studies of siblings, particularly where the events are not distinguishable, it
will probably suffice to have a common baseline and common coefficients.

4.3.3 Accelerating the Algorithm

The results of Louis (1984), described in the technical note on the EM
algorithm, can be used to

• speed-up the algorithm, and
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• obtain standard errors.

See my paper with Guo for details.

4.3.4 The Incomplete Data log-Likelihood

The EM algorithm is simple and stable, and sometimes it is the only way
to proceed, particularly if the correct likelihood is hard to obtain or would
require numerical integration.

That is not the case here. Both with gamma heterogeneity and a finite
mixture model the correct incomplete data log-likelihood is tractable. We
have already given expressions for the survival function; the hazard follows
easily.

Moreover, the first and second derivatives w.r.t. the parameters can be
obtained, opening the possibility of using a Newton-Raphson algorithm.
This however, requires good starting values. The accelerated EM algorithm
is probably more stable and just as fast.

5 Fixed-Effects Models

In the discussion so far we have treated the cluster-specific effect θi as ran-
dom: we postulate a distribution and then estimate the parameters of that
distribution.

An alternative approach is to treat the θi as fixed quantities to be esti-
mated, effectively adding one parameter for each cluster.

One difficulty with this approach is that when the number of parameters
to be estimated increases with the number of observations, we generally get
inconsistent estimates, not only for the offending parameters, but also for
the other parameters in the model.

There is, however, a way around these difficulties. It is often possible
to eliminate the fixed effects θi from the likelihood by suitable condition-
ing. Usually one conditions on a statistic (a function of the data) that is
minimal sufficient for θi (meaning that the likelihood viewed as a function
of θi depends on the data only through this statistic, which has the same
dimensionality as thetai).

In the present context one can construct a partial likelihood that elimi-
nates the θi. This approach is discussed by Kalbfleisch and Prentice (1980)
under the rubric of stratification, and has been advocated among demogra-
phers and economists in a series of papers by Ridder and Tunali.
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Here are the basis ideas. We assume a multivariate proportional hazards
model where the risk to subject j in cluster i is

λij(tij) = θiλ0(tij)e
x′

ijβ ,

where θi is a fixed cluster effect, λ0(tij( is a baseline hazard and ex′
ijβ is a

relative risk, as usual.
Next we construct a partial likelihood separately in each cluster. Let

ti1 < . . . < timi denote the distinct times of death observed in cluster i.
Assume no ties, so only one person dies at each tij , and let Rij denote the
risk set in cluster i just before time tij . The partial likelihood is

L=

mi∏
j=1

θiλ0(tij)e
x′

ijβ∑
k∈Rij

θiλ0(tij)ex′
ik

β
,

and as you may see, this time it is not just the baseline hazard λ0(tij) but
also the cluster-specific effect θi that cancels out of the likelihood. (In fact,
we don’t even need to assume the same baseline hazard for each cluster.)

The overall partial likelihood is obtained as the product of the cluster-
specific partial likelihoods over all clusters. Ties can be handled using the
standard approximations, such as Peto’s or Efron’s.

Some important points to note about this procedure:

• Clusters with no deaths do not contribute to the likelihood

This is an unfortunate consequence of the fact that θi is a fixed unknown
parameter. If there are no deaths, it is conceivable that θi is zero. This
doesn’t happen in random-effects models with continuous frailty because
the θi are supposed to come from a distribution that puts no mass at zero.

• Covariates that are constant within a cluster also drop out from the
likelihood

This point is very important. In a study of child mortality, we cannot
estimate the effect of mother’s education if we use a family-level fixed effect.
The reason is that the term eβxi would appear both in the numerator and
denominator of the cluster-specific partial likelihood and would therefore
cancel out. Another way to think about this is to note that θi captures all
influences common to members of a cluster, both observed and unobserved.
So you can only estimate the effects of child-level covariates.

Moreover, if a covariate happens to have the same value for all children
in a family it would also drop out of the likelihood. Imagine a family with
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three girls. This family cannot contribute to estimating the effect of sex on
mortality. You might think that this family would contribute to estimating
the mortality of girls while other families contribute to estimating the mor-
tality of boys, The problem is that the differences between these families
could be due to their fixed effects, and have nothing to do with the sex of
their children.

Here, then, lies the main advantage and disadvantage of the technique.
One often ends up using only a small fraction of the original data, raising
the specter that the cases selected for analysis are very different from the
rest. On the other hand one may argue that the are precisely the cases
that contain information. Only by looking at children within a family who
differ on a trait, and such that one dies and the other doesn’t, can we be
sure that the apparent effect of the trait is not due to unobserved family
characteristics.

Fixed-effects models control for both observed and unobserved cluster
characteristics; they solve the omitted variables problem at this level, but
cannot estimate the effects of included variables. Random-effects models
address the problem of intra-cluster correlation, but can only capture the
effects of unobserved cluster characteristics that are uncorrelated with ob-
served covariates. They offer no solution to the omitted variables problem,
but can estimate the effects of observed variables at all levels.
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