
Multilevel Models
9. Models for Count and Survival Data

Germán Rodŕıguez
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Poisson Models

This unit concerns models for count data. We assume that
conditional on unobserved random effects the outcomes have a
Poisson distribution.

For example in a two-level random intercept model we write

Yij |ai ∼ P(µij) where logµij = (α + ai ) + x ′ijβ

We will assume that aij ∼ N(0, σ2
a) as we have done for other

models. This choice generalizes to more general random-coefficient
models but requires quadrature. Stata uses adaptive quadrature in
xtpoisson and mepoisson and R’s glmer() uses quadrature for
one random effect and PQL otherwise.

An alternative with Poisson models is to use a gamma-distributed
multiplicative random effect, which can be integrated analytically,
but doesn’t generalize to correlated random effects. Stata’s
xtpoisson implements gamma as an option.
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A Random-Intercept Poisson Model

Our first application is to small area estimation using data on lip
cancer from Scotland. The data consist of the number of cases
observed in each of 56 counties in 1975-80, and are available at
http://www.stata-press.com/data/mlmus3/lips.dta.

We also have information on the expected number of cases based
on age-specific lip cancer rates for the whole of Scotland and the
age distribution in each county. The ratio of observed to expected
counts, usually times 100, is called the Standardized Mortality
Ratio (SMR). For example a value of 193.2 denotes almost twice
as many cases as expected.

A limitation of crude SMRs is that estimates for counties with
small populations are very imprecise. To address this problem we
will use Empirical Bayes (EB) estimates based on a
random-intercept Poisson model. By adding a random effect at
level one we are effectively modeling over-dispersion.
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Fitting the Random-Intercept Model

In this model the conditional distribution of the count is Poisson
with mean proportional to the expected number of cases

Yi |ai ∼ P(µi ) with logµi = α+ai+log(ei ) and ai ∼ N(0, σ2)

malmus fits the model using gllammm (page 724). Using Stata’s
mepoisson we get the same results using the comand

mepoisson o, offset(lne) || county:

Note that the offset has to be specified as an option in the fixed
part of the model. The model can also be fit using R as shown in
the computing logs.

Using mean-variance adaptive Gauss-Hermite quadrature with 12
points we get α̂ = 0.0803 and σ̂2 = 0.5847.

The average SMR in this model is 145, obtained by noting that

E (Yi/ei ) = exp(α + ai ) and E (exp(ai )) = exp(σ2/2)

There is, however, substantial variation across counties.
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Prediction of SMRs by County

We now consider predicting the SMR in each county using EB
posterior means or modes. Stata’s mepoisson uses means, but has
an option for modes; gllamm uses means, and R uses modes.

We first predict the random effects using predict a, reffects

or ranef() to obtain âi for each county, and then add the
constant but leave out the offset, computing the predicted SMR as
100 exp{α̂ + âi}.

The figure on the right
shows the EB estimates
plotted against the crude
SMRs and exhibits the
usual shrinkage towards
the overall mean, see
malmus figure 13.3. 0

20
0

40
0

60
0

E
m

pi
ric

al
 B

ay
es

 S
M

R

0 200 400 600
SMR

5 / 12 Germán Rodŕıguez Pop 510



A Choropleth Map

The map on the right
shows the counties of
Scotland with shading
representing the EB
estimate of the SMR,
reproducing malmus
Figure 13.2.

The computing log shows
how to reproduce this
graph using Stata code
available from Stata press
or our own R code. The
incidence of lip cancer is
higher in coastal places,
particularly in the north.
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Health-Care Reform in Germany

malmus examines the extent to which the health-care reform in
Germany reduced the number of doctor visits, using panel data for
women working full time before and after the reform.

Here is a comparison of effect estimates from three models, all including
controls for age, education, married, bad-health, log-income and summer

Model Poisson R-Intercept R-Slope
Reform 0.8690 0.9547 0.9023
σa - 0.9051 0.9541
σb - - 0.9303

The random-intercept model shows substantial unobserved heterogeneity
in doctor visits among women with the same observed attributes; a one
std dev increase in “frailty” results in 2.5 times as many visits.

The random-slope model allows the effect of the reform to vary across

women. The effect for the average woman is now a 10% reduction, but

varies substantially across women. The correlation between intercept and

slope is −0.491.
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Infant and Child Mortality in Kenya

An important application of Poisson models is to multilevel survival
analysis via the connection with piecewise exponential survival.

I illustrate this approach with an analysis of infant and child
mortality using the Kenya DHS, with an abridged version in
“Multilevel Models in Demography” and full details in my chapter
of the Handbook of Multilevel Analysis.

Let λijk(t) denote the hazard at age t for the i-th child of the j-th
mother in the k-th community. We consider a three-level model

λ(t|xijk , ajk , ak) = λ0(t) exp{x ′ijkβ + ajk + ak}

where λ0(t) is the baseline hazard, β is a vector of fixed
parameters representing effects of observed covariates, and
ajk ∼ N(0, σ2

2) and ak ∼ N(0, σ2
3) are random effects representing

unobserved family and community frailty.
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Estimation Using Poisson Regression

We assume the hazard is constant in intervals with cutpoints τd .
After some exploratory work I chose cutpoints 0,1,6,12,24 and 60
months. I then split each observation into one episode per interval
visited, and count events and exposure, obtaining 48,094 episodes.

Predictors include one variable at the community level (urban or
rural), one at the mother level (years of education) and five at the
level of the child, all well-known risk factors (gender, cohort, age of
mother, birth order, and length of the previous birth interval). I’ll
show how these are represented when I display the coefficients.

To fit the piecewise exponential model we treat the death indicator
as Poisson with the log of exposure time as an offset. Estimation
using mean-variance adaptive Gaussian quadrature is implemented
in Stata’s mepoisson. (Unfortunately R’s glmer in the lme4

package uses PQL for three-level models. Fortunately there is a
good interface to Stan for Bayesian estimation.)
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Parameter Estimates

Variable Term Coefficient Standard Error Hazard Ratio
Fixed Coefficients

Constant 1 -4.588 0.118 -
Age 1–5 -1.642 0.089 0.194

6–11 -1.998 0.097 0.136
12–23 -2.822 0.106 0.059
24–59 -3.362 0.109 0.026

Sex male 0.087 0.068 1.091
Cohort 1993+ 0.173 0.069 1.189
Mother’s a− 25 -0.047 0.011 0.954
age (a− 25)2 0.003 0.001 1.003
Birth o − 3 0.043 0.039 1.044
order (o − 3)2 0.004 0.005 1.004
Interval (30− i)+ 0.036 0.006 1.037
Mother’s e − 7 -0.068 0.015 0.934
education (e − 7)2 -0.007 0.003 0.993
Residence urban 0.040 0.142 1.041

Variance Parameters
Family σ2 0.613 0.086 1.846
Community σ3 0.680 0.055 1.973
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Hazard Ratios

The fixed coefficients can be interpreted in the usual fashion.
Children born after 1993 have 19% higher risk that those born
earlier, after adjusting for all other factors.

For variables represented using a quadratic or a spline a graph is
always helpful:
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The most remarkable feature of the results, however, is the extent
to which we have unobserved heterogeneity at the family and
community level.
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Predicted Probabilities

A nice way to present results is to compute conditional and
marginal probabilities of death by age one and five.
Here are estimated conditional (or subject-specific) probabilities for
quartiles 1 and 3 of observed and unobserved risk:

      Q1

    Q1 Q3

      Q1

Q1 Q3 Q3

      Q1

    Q1 Q3

      Q1

Q3 Q3 Q3

0 50 100 150 200

Com Fam Obs

The marginal (or population-average) probabilities can be obtained
using Gauss-Hermite quadrature.

12 / 12 Germán Rodŕıguez Pop 510


