
Multilevel Models
8. Bayesian Inference via Metropolis-Hastings

Germán Rodŕıguez

Princeton University

April 18, 2018

1 / 12 Germán Rodŕıguez Pop 510

Markov Chain Monte Carlo

The Gibbs sampler is very popular but by no means the only
MCMC method. An alternative is the Metropolis-Hastings
algorithm, which can sample from a multivariate distribution in one
step. Robert and Casella (2010) have a nice introduction to Monte
Carlo Methods with R.

The basic idea given a target density f is to build a Markov Chain
that has stationary distribution f . You’d think this is hard, but in
fact there are methods that work in principle for any density. One
such method is Metropolis-Hastings. (Another is Gibbs sampling.)

Stata now has Bayesian methods using Metropolis-Hastings, and R
has an interface to Stan, which implements a variant of the
algorithm using Hamiltonian dynamics, and includes a package
that can fit many standard models by calling Stan to do the work.

We describe some basic features of the algorithm before turning to
the implementations.

2 / 12 Germán Rodŕıguez Pop 510

Metropolis Hastings

For a target f we need a density q(y |x) that is easy to sample
from (for example multivariate normal) and such that the ratio
f (y)/q(y |x) is known up to a constant independent of x .

If q(.|x) has enough variation to cover the support of f we can
build a chain that has stationary distribution f using a surprisingly
simple algorithm:

Given x (t),

1 Generate Yt ∼ q(y |x (t)), and

2 Take x (t+1) = Yt with probability ρ(x (t),Yt) and x (t)

otherwise, where

ρ(x , y) = min{ f (y)

f (x)

q(x |y)

q(y |x)
, 1}

is the acceptance probability. Note that sometimes we keep the old
value! The kernel q is called the proposal and affects the
acceptance rate and efficiency of the chain.

3 / 12 Germán Rodŕıguez Pop 510

Independent and Random Walk Variants

The basic algorithm allows the draw to depend on the current
state of the chain, but this is not necessary and the proposal can
be q(y |x) = q(y). This leads to a simplified algorithm called
independent MH, which is simple but hard to tune well.

One way to take into account the previous value is to simulate
Yt = X (t) + εt where εt is a random perturbation with distribution
g independent of X (t), so the proposal density q(y |x) has the form
g(y − x), leading to the random walk MH

Given x (t),
1 Generate Yt ∼ g(y − x (t)), and
2 Take x (t+1) = Yt with probability min{f (Yt)/f (x (t)), 1} and

x (t) otherwise

In fact this was the original version of the algorithm. Sometimes,
howevever, random walks are slow to converge, and efficiency is
highly dependent on the choice of g .

4 / 12 Germán Rodŕıguez Pop 510

Hybrid or Hamiltonian Monte Carlo (HMC)

The latest development in MCMC is a hybrid algorithm that uses
Hamiltonian dynamics borrowed from physics to improve on
traditional Metropolis-Hastings by producing proposals far from
the current values yet with high probability of acceptance.

The Hamiltonian of a system describes the movement of a particle
given its position and momentum in space and leads to differential
equations for its trajectory over time.

In statistical MCMC we treat minus the log of the posterior density
as the position, and sample the momentum along each dimension
from independent Gaussian distributions.

The trajectory is simulated in discrete time using L steps of size ε
using a method known as leapfrog to reach a proposed state,
which is then accepted or rejected using H-M with appropriate
acceptance probability. See Neal (2011) for an excellent discussion.

5 / 12 Germán Rodŕıguez Pop 510

The No-U-Turn Sampler (NUTS)

One difficulty with HMC is that it needs the gradient of the log
posterior in order to compute momentum. But this can be handled
using automatic differentiation.

Another difficulty is the need to fine tune the two HMC parameters
L and ε, which is essential to obtain an efficient algorithm.

Hoffman and Gelman (2014) proposed an HMC variant known as
NUTS that avoids the need to specify the number of steps L while
ensuring that the trajectory is followed long enough, and can
auto-tune ε using a clever scheme to achieve the same efficiency as
HMC, and sometimes even better.

The end result is an algorithm that seems very well suited for
automatic Bayesian inference without the need for costly tuning
steps or substantial expertise.

6 / 12 Germán Rodŕıguez Pop 510

Stan

The NUTS variant of the HMC algorithm has been implemented in
the program Stan, a “probabilistic programming language” from
Gelman’s group, named after Stanislaw Ulam, inventor of Monte
Carlo. The language has a website at http://mc-stan.org.

Stan is a high-level language not unlike BUGS that can be used to
specify a model, but then generates a C++ program that is
compiled and run to generate the samples efficiently.

There are interfaces to run Stan from R and Stata (as well as
Python, Julia, Matlab, Mathematica and Scala) which help a bit,
but still require learning the modeling language.

There is also an R package called RStanArm that makes using Stan
extremely easy for standard models because you can specify them
using R syntax!

7 / 12 Germán Rodŕıguez Pop 510

The Hospital Data

My first experience with Stan was running the Lillard and Panis
hospital delivery data. Here’s the code, saved in R as a string:
data {

int N; // number of obs (pregnancies)

int M; // number of groups (women)

int K; // number of predictors

int y[N]; // outcome

row_vector[K] x[N]; // predictors

int g[N]; // map obs to groups (pregnancies to women)

}

parameters {

real alpha;

real a[M];

vector[K] beta;

real<lower=0,upper=10> sigma;

}

model {

alpha ~ normal(0,100);

a ~ normal(0,sigma);

beta ~ normal(0,100);

for(n in 1:N) {

y[n] ~ bernoulli(inv_logit(alpha + a[g[n]] + x[n]*beta));

}

}

The variable names are not very descriptive because I wanted to
write code I could use for other random-intercept logit models.

8 / 12 Germán Rodŕıguez Pop 510

Running from R

To run the model I first copied the data from hosp to a list with
the same names as the Stan code

hosp_data <- list(N=nrow(hosp),M=501,K=4,y=hosp[,1],x=hosp[,2:5],g=hosp[,6])

I then ran the model specifying 2 chains of 2000 samples each

hfit <- stan(model_code=hosp_code, model_name="hospitals", data=hosp_data, iter=2000, chains=2)

TRANSLATING MODEL ’hospitals’ FROM Stan CODE TO C++ CODE NOW.

COMPILING THE C++ CODE FOR MODEL ’hospitals’ NOW.

...

SAMPLING FOR MODEL ’hospitals’ NOW (CHAIN 1).

Iteration: 2000 / 2000 [100%] (Sampling)

Elapsed Time: 58.065 seconds (Warm-up)

24.373 seconds (Sampling)

82.438 seconds (Total)

SAMPLING FOR MODEL ’hospitals’ NOW (CHAIN 2).

Iteration: 2000 / 2000 [100%] (Sampling)

Elapsed Time: 58.074 seconds (Warm-up)

23.186 seconds (Sampling)

81.26 seconds (Total)

The computing log at hospStan.html has more details about this
run.

9 / 12 Germán Rodŕıguez Pop 510

Stan and hospital deliveries

Here are the Stan trace
plots for the parameters,
showing two chains.

For generality I used a
vector of coefficients β.
The actual names are
loginc, distance,
dropout and college.

As you can see, we get

mostly fuzzy caterpillars,

but the standard

deviation of the random

effects at the woman

level exhibits slow mixing.

1000 1200 1400 1600 1800 2000

−
5

−
3

Trace of alpha

Iterations (without warmup)

1000 1200 1400 1600 1800 2000

0.
4

0.
6

0.
8

Trace of beta[1]

Iterations (without warmup)

1000 1200 1400 1600 1800 2000

−
0.

15
0.

00

Trace of beta[2]

Iterations (without warmup)

1000 1200 1400 1600 1800 2000

−
0.

5
1.

0
2.

5

Trace of beta[4]

Iterations (without warmup)

1000 1200 1400 1600 1800 2000

0.
8

1.
4

Trace of sigma

Iterations (without warmup)

10 / 12 Germán Rodŕıguez Pop 510

Stan Meets Applied Regression Modeling

The R package RStanArm makes it very easy to run the types of
models in Gelman and Hill’s ARM book by providing an R
interface almost identical to glm and glmer to specify the model,
which is then run in Stan using pre-compiled code.

Here’s the R call for maximum likelihood:

glmer(hosp ~ loginc + distance + dropout + college + (1 | mother),

data = hosp, family = binomial, nAGQ = 12)

And here’s the equivalent R call for Bayesian estimation:

stan_glmer(hosp ~ loginc + distance + dropout + college + (1 | mother),

data = hosp, family = binomial)

This will run four chains with burn-ins and samples of 1,000
observations each.

I recommend using this interface for standard models and then
learning the more powerful Stan language to fit a much wider
variety of realistically complex models.

11 / 12 Germán Rodŕıguez Pop 510

Metropolis-Hastings in Stata

Stata now has a bayeshm command that can fit a variety of
models using a random walk Metropolis-Hastings algorithm. The
developers note that the algorithm is not optimal for Bayesian
multilevel models, but can be used in models that do not have too
many random effects. Here’s a command that will run a
random-intercept model with the hospital data

bayesmh hospital loginc distance dropout college ibn.group ///

, likelihood(logit) ///

prior({hospital:i.group}, normal(0,{var})) ///

prior({hospital:loginc distance dropout college _cons}, normal(0,1000)) ///

prior({var}, igamma(0.001,0.001)) ///

block({hospital:i.group}, reffects) ///

block({hospital:loginc distance dropout college _cons}) ///

block({var})

The syntax is similar to other Stata commands, treating the
grouping variable as a factor without a reference cell. Sampling all
parameters together is inefficient and we work in blocks, separating
the fixed, random and variance parameters. See the computing log
at hospStata.html for details.

12 / 12 Germán Rodŕıguez Pop 510

