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Binary data

We now turn our attention to clustered and longitudinal binary
data. Examples that we will consider include

Data on the decision to deliver a birth in a hospital or
elsewhere, with repeated observations on a sample of women.

Contraceptive use by women in the Bangladesh DHS. The
data are clustered by district, which may affect both levels
and urban-rural differentials in contraceptive use.

Immunization status for Guatemalan children, which are
clustered by mother, which are in turn nested in communities.

For the first example and part of the second we can use fixed or
random effects models.

For three or more levels, and more generally for random coefficient
models, we need a multilevel approach.

We start with a quick reminder of fixed and random-effects models.
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Fixed effects models

We consider a clustered binary outcome following the fixed-effects
model

Yij ∼ B(πij), with logit(πij) = αi + x ′ijβ

where αi is a separate parameter for each group.

The usual ML estimator, equivalent to adding a dummy variable
for each group, is inconsistent not just for the group parameters αi

but for β as well, in contrast with linear models.

The solution is to condition on group totals, which happen to be
minimal sufficient statistics for the group effects αi .

The resulting likelihood involves only groups with variation in both
the outcome and the predictors. Sometimes losing 90% of the data
is disconcerting, but a necessary price to pay to control for
group-level omitted variables.
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Random effects models

An alternative model assumes that the group effects are random, so

Yij ∼ B(πij), where logit(πij) = ai + x ′ijβ

where ai ∼ N(0, σ2
a), is independent of the covariates and of the

implicit error term.

The model can be written in terms of a latent variable following a
linear random-intercept model, where Yij = 1 if Y ∗ij > 0, and

Y ∗ij = ai + x ′ijβ + eij

where ai ∼ N(0, σ2
a) as before and eij has a standard logistic

distribution with mean 0 and variance π2/3 (or N(0, 1) for probit).
Just as in logit models we fix the error variance to identify β.

Estimation by ML is implemented in Stata and R, but is not
without some challenges that we now discuss.
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Maximum likelihood estimation

In multilevel linear models the marginal likelihood is multivariate
normal, so estimation is straightforward.

In multilevel logit models the likelihood is logistic-normal and,
unfortunately, has no closed form. In the random intercept model
the contribution from cluster i is

Li =

∫ +∞

−∞
g(a)

ni∏
j=1

πij(a)yij [1− πij(a)]1−yijda

where πij(a) = logit−1(a + x ′ijβ) and g(a) is the N(0, σ2
a) density.

This integral is intractable.

Not surprisingly, various researchers have proposed approximations.
Regrettably, some of them don’t work very well. I’ll summarize the
main approaches, see Rodŕıguez and Goldman (1995, 2001),
henceforth RG1 and RG2, for more details.
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MLQ: Marginal quasi-likelihood

The multilevel logit model can be written in general form as

y = π + e where π = logit−1(Xβ + Zu)

MQL-1. Goldstein approximates the inverse logit using a first order
Taylor series about β = β0 and u = 0 for a trial estimate β0.
This leads to an approximating multilevel linear model, which is
used to obtain an improved estimate. The procedure is iterated to
convergence. Longford uses a quadratic approximation to the
log-likelihood. RG1 show that it is equivalent to MQL-1.

MQL-2. A second-order approximation that uses second derivatives
w.r.t. u only, ignoring second derivatives w.r.t. the fixed effects β
as well as mixed derivatives. Convergence can be an issue.

Both procedures are implemented in MLwiN. Not surprisingly, they
work well for very small u.
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PQL: Penalized quasi-likelihood

PQL-1. An obvious improvement is to approximate π using a
Taylor series expansion about

β = β0 and u = u0

where β0 is the current ML estimate of β and u0 is the EB
estimate of u evaluated at current parameter estimates.
This method has been derived by several authors using different
perspectives. It was named PQL by Breslow and Clayton. It
usually works better than MQL.

PQL-2. Goldstein and Rasbash proposed a second-order PQL
approximation using second derivatives w.r.t. u only, ignoring
second derivatives w.r.t. the fixed effects β as well as mixed
derivatives, just as before.

MLwiN implements both forms of PQL.
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A simulation study

RG1 conducted a simulation study using several scenarios,
involving small and large random effects and designs with small
and large clusters, as found in education and demographic research.

Of particular interest is a set of simulations using the same
structure as a real dataset from Guatemala, which concerned
prenatal care for 2449 births among 1558 women nested in 161
communities. In fact, it was doubts about conventional estimates
obtained with the actual data that motivated the simulation study.

We simulated data using known values of the fixed coefficients and
of the variances of the random effects, and then fitted a three-level
random intercept model using MQL and PQL.

The data were made available through JRSS-A and on my website,
and have been used by several authors, including Nelder, Goldstein
and Rasbash, and Browne and Draper.
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Comparison of estimates

Here are some results from Table 9.1 in Rodŕıguez (2008), which
has the most complete set of estimates for a simulation using large
random effects.

Estimation Fixed Part (β) Random Part (σ)
method Individual Family Community Family Community
True value 1.000 1.000 1.000 1.000 1.000
MQL-1 0.738 0.744 0.771 0.100 0.732
MQL-2 0.853 0.859 0.909 0.273 0.763
PQL-1 0.808 0.806 0.831 0.432 0.781
PQL-2 0.933 0.940 0.993 0.732 0.924

MQL-1 underestimates βs by 23-26% and σs by 27 and 90%!
MQL-2 is more accurate but doesn’t always converge. PQL-1 is
better than MQL-1, competitive with MQL-2, and more likely to
converge. PQL-2 is best in the series, with 1-7% bias for the βs,
but still underestimates σs by 8 and 27% and may not converge.
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Gaussian quadrature

In light of these results we turned to ML via numerical integration
of the likelihood function using Gaussian quadrature.

Quadrature rules approximate an integral as a weighted sum over a
grid of points. Gaussian quadrature chooses both the weights and
the evaluation points to minimize error for different integrands.

Gauss-Hermite quadrature can be used with integrals of the form∫
f (x)e−x

2
dx =

q∑
k=1

wk f (xk)

The evaluation points are zeroes of the Hermite polynomials and,
together with the weights, can be obtained from tables or code.

This method can be applied to the integral in slide 5 through a
simple change of variables.
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Adaptive quadrature

An alternative procedure that achieves remarkable accuracy with
fewer points moves the evaluation points to cover the posterior
rather than the prior distribution of the random effects.

Liu and Pierce approximate the posterior using a normal
distribution with the same mode and curvature at the mode. This
has the effect of sampling the integrand in a more relevant range.
The method with just one point is equivalent to a Laplace
approximation or PQL-1.

Rabe-Hesketh and collaborators, building on work by Naylor and
Smith, use the posterior mean and variance of the random effects
instead of the mode and curvature. This leads to somewhat simpler
calculations and was first implemented in their gllamm command.

Pinheiro and Bates see adaptive quadrature as a deterministic
version of importance sampling and use it in non-linear models.
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Validating quadrature methods

Does it work? We validated ML via quadrature using the simulated
data before using it on actual data, with the following results

Estimation Fixed Part (β) Random Part (σ)
method Individual Family Community Family Community
True value 1.000 1.000 1.000 1.000 1.000
ML-5 0.983 0.988 1.037 0.962 0.981
ML-20 0.983 0.990 1.039 0.973 0.979

Obviously numerical integration works very well indeed, even with
as few as 5 points.

Our analysis of the Guatemalan data, published in Demography
and used as a case study in RG2, used 20 quadrature points at
each level. I later was able to reproduce the results exactly using
12-point adaptive quadrature. The page maxlik.html has some
vintage runs and comparisons, but these days we use Stata or R.
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Software notes

Stata implements quadrature procedures in two commands:

xtlogit fits random-intercept models. The option intmethod()

can be ghermite for classic Gauss-Hermite, aghermite for
adaptive G-H using mode and curvature, or mvaghermite for
adaptive G-H using the mean and variance. The default is mv. The
number of points is specified with the intpoints() option and
defaults to 12.

melogit fits random-coefficient models using adaptive
Gauss-Hermite with 7 points per effect as the default. In addition
to the intmethod() and intpoints() options, there’s a laplace

option, equivalent to PQL-1, as a faster but less accurate
alternative for exploratory work. The number of integration points
can be varied by level.

Stata 14 can also fit these models using meglm.
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Software notes (continued)

R’s lme4 package has a function glmer() to fit generalized linear
multilevel models.

For random-intercept models the default is PQL, but it is possible
to specify adaptive quadrature using the mode and curvature by
specifying the number of integration points via the nAGQ argument,
which defaults to one. I strongly recommend that you avoid the
default and specify 7 or preferably 12 points as Stata does.

For random-coefficient models the only option available is PQL,
which unfortunately means that maximum-likelihood results should
be considered approximate and useful only for exploratory work.
(As we will see later, however, these models can be estimated in R
using Bayesian methods.)
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Hospital Deliveries

Our first example will use data from Lillard and Panis on the
decision to deliver a birth in a hospital or elsewhere, available in
the datasets section as hospital.dat.

The dataset comprises 501 women with 1060 births. The outcome
hosp is a binary indicator of hospital delivery with mean 0.297.

The predictors of interest are loginc or log-income, distance to
the nearest hospital, and two indicators of the woman’s education:
dropout for less than high school and college for college
graduates or higher (only 8.4% of the women).

A simple logit model suggests that all predictors have significant
effects on the probability of hospital delivery, but the assumption
of independence is not adequate with repeated observations on the
same women.
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A Random-Intercept Model

We therefore introduce a woman level random effect ai and
assume that conditional on that each woman’s outcomes are
independent with probability satisfying the logit model

Pr{Yij = 1|ai} = logit−1(ai + x
′
ijβ)

where x ij represents the predictors for the j-th birth of the i-th
woman and ai ∼ N(0, σ2

a) is the woman-specific random effect,
assumed normally distributed.

As noted earlier the likelihood for this model has no closed form
and must be evaluated using numerical integration. The
computing logs show results using 12 quadrature points in Stata
and R. Notably R’s default choice of PQL does not converge with
these data, but specifying nAGQ=7 works fine.
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Maximum-Likelihood Estimates

Here are estimates obtained using all the defaults in Stata

Integration method: mvaghermite Integration pts. = 12

Wald chi2(4) = 110.06

Log likelihood = -522.65042 Prob > chi2 = 0.0000

------------------------------------------------------------------------------

hosp | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

loginc | .5622009 .0727497 7.73 0.000 .4196141 .7047876

distance | -.0765915 .0323473 -2.37 0.018 -.1399911 -.013192

dropout | -1.997753 .2556249 -7.82 0.000 -2.498769 -1.496737

college | 1.03363 .3884851 2.66 0.008 .2722135 1.795047

_cons | -3.36984 .4794505 -7.03 0.000 -4.309546 -2.430134

-------------+----------------------------------------------------------------

/lnsig2u | .4372018 .3161192 -.1823805 1.056784

-------------+----------------------------------------------------------------

sigma_u | 1.244335 .1966791 .912844 1.696203

rho | .3200274 .0687907 .2020988 .4665343

------------------------------------------------------------------------------

LR test of rho=0: chibar2(01) = 29.61 Prob >= chibar2 = 0.000

We will discuss interpretation of the fixed effects as well as the
standard deviation of the random effects. (We’ll leave estimation
of the random effects themselves to the next example.)
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Subject-Specific and Population Average

The fixed effects have a subject-specific interpretation. For
example the coefficient of college means that the odds of
delivering a birth in a hospital are multiplied by 2.81 when a woman
has a college education, compared to what her odds would be with
only a high school education but the same income, distance to the
hospital, and unobserved characteristics as captured by ai .

Contrast this with a population-average effect, which we can
obtain by averaging the effect of college education over all women
with given observed characteristics. For example at the mean
loginc of 5.988 and the mean distance of 3.918, the
probabilities for college 1 and 0 averaged over the distribution of
a using Gauss-Hermite integration are 0.637 and 0.442, leading to
an odds ratio of 2.21.

Population-average (or marginal) coefficients are smaller in
magnitude than subject-specific (or conditional) coefficients.
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Plotting SS and PA Effects

The figure below shows the predicted probability of hospital delivery as a

function of log-income for women with high school education, who live at

the average distance from a hospital, and have unobserved characteristics

in percentiles 10, 30, 50, 70 and 90. We also show the predicted

probabilities based on the population average model (dashed line).
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Standard Deviation of Random Effects

A nice way to interpret the standard deviation σa is to write
ai = σezi where zi is a standard-normal random effect, so the
model becomes

logit(πij) = σazi + x
′
ijβ

and σa can be interpreted as a regular logit coefficient for the
standardized random intercept zi

In our data σ̂e = 1.244. Thus, the odds of hospital delivery for a
woman with unobserved characteristics one standard deviation
above the mean are 3.47 times the odds of an average woman with
the same log-income, distance to a hospital and education.

Similarly, the odds for a woman with unobserved characteristics
one standard deviation below the mean are 71% lower than for the
average woman with the same observed characteristics.

This parameter is also related to the intra-class correlation.
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Latent Intra-Class Correlation

The intraclass correlation is best defined in terms of the latent
variable formulation of the model shown earlier. For a logit model

ρ =
σ2
a

σ2
a + π2/3

because in a standard logistic distribution σ2
e = π2/3. (In a probit

model σ2
e = 1, and in a c-log-log model is it σ2

e = π2/6.)

For the hospital delivery data the correlation between the
propensity of a woman to deliver any two births in a hospital is

ρ̂ =
1.2442

1.2442 + π2/3
= 0.32

This also means that 32% of the variance in the latent propensity
to deliver a birth in a hospital can be attributed to women.
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Manifest Intra-Class Correlation

In a 2003 paper with Elo we proposed looking at the correlation
between actual binary outcomes, which depends on the covariates.
Our method is described in malmus §10.9.3 and implemented in a
Stata command called xtrho.

We calculate a two-by-two table of expected outcomes for two
observations in the same group, which we do by integrating out
the random effect at selected values of the linear predictor. At the
median we get

No Yes
No 0.6153 0.1454 0.7607
Yes 0.1454 0.0938 0.2393

0.7607 0.2393 1.0000

The marginal probability that a median woman would deliver a
birth in a hospital is 24%, and the joint probability for two births is
9%. The Pearson correlation is 0.20 and Yule’s Q is 0.46. The
odds ratio is 2.73.

Calculations are easily done in Stata with our xtrho command.
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Correcting Standard Errors for Clustering

Some researchers faced with repeated binary observations simply
fit logit models and then adjust the standard errors for clustering
using extensions of the Huber-White “sandwich” estimator. This
approach is fine if you keep in mind two caveats:

1 You must realize you are fitting a population-average rather
than a subject-specific model and interpret the parameters
accordingly. As we have seen, the effect for a particular
subject differs from the average effect in the population.

2 The estimates obtained using a logit model are not efficient
because they ignore the correlation structure of the data. A
better approach is to use generalized estimating equations
(GEE), which produces efficient population-average estimates
and correct standard errors.
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Comparison of Estimates

The table below compares four estimates of the effect of college
education and its standard error, using logit models, logit with
corrected standard errors, GEE, and random effects

Logit Cluster GEE Multilevel

β̂ 0.8217 0.8217 0.8078 1.0336
s.e. 0.2611 0.2884 0.2980 0.3885

The first three methods estimate a population-average effect
equivalent to an odds ratio of 2.24 (not unlike our result), and both
correcting for clustering and using GEE inflate the standard error.

The estimated subject-specific effect corresponds to an odds ratio
of 2.81 and is larger than the average effect (it also has a larger
standard error).

The key point is that having clustered data affects not just the
standard errors but the coefficients themselves.
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