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Longitudinal data

malmus devotes Chapters 5-7 to models for longitudinal data
with emphasis on short panels, and considers four kinds of models

1 Random-effect models, where unobserved heterogeneity at the
subject level is represented by random intercepts and slopes

2 Fixed-effect models, where we introduce an additional
parameter per subject to focus on within-subject variation

3 Dynamic models, where the response at a given time depends
on previous or lagged responses

4 Marginal models, where focus is on population average effects
and individual differences are of secondary concern

We will focus on random-effect models for longitudinal data. Many
of the issues that arise here are the same as for clustered data, so
we will place emphasis on aspects that are unique to panel data.
We will then close with a couple of words on dynamic models.

2 / 22 Germán Rodŕıguez Pop 510



Growth-curve models

We consider a repeated-measurements design where an outcome is
measured at different times on the same individuals, leading to a
growth curve or latent trajectory model.

Examples include weight gain during pregnancy, or depression
scores by age. The term latent trajectory is used because each
individual follows his or her own curve over time.

Growth curve models can be fit using standard two-level models
where the individual acts as the grouping level, particularly if they
are extended to allow for serial correlation in the residuals.

If all individuals are measured at exactly the same ages, growth
curves can also be modelled using structural equation models
(SEM) with exactly the same results for equivalent models.
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Height of boys at ages 11 to 13

We illustrate the main ideas using an example in Goldstein (1995),
see §6.4 and 6.5, starting on page 91, on the heights of boys
measured on nine occasions
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Height of 26 boys at ages 11 to 13

The data are available on the course website as oxboys.dta, with
an analysis using Stata and R at oxboys.html
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A polynomial growth equation

The basic model used by Goldstein is a fourth-degree polynomial
on age, where the constant, linear and quadratic coefficients are
random at the child level, so

Yit = (β0 + b0i ) + (β1 + b1i )xit + (β2 + b2i )x
2
it + β3x

3
it + β4x

4
it + eit

where Yit is height in cm and xit is age of the i-th child at time t,
centered around 12 years and 3 months.

The child-level residuals (b0i , b1i , b2i ) are assumed to come from a
trivariate normal distribution with mean zero and unstructured
covariance matrix (with three variances and three correlations),
and eit ∼ N(0, σ2

e ) is the occasion-specific error term.

This is a standard random-coefficient model with the child as the
grouping level, so we already know how to fit it. Let’s add some
bells and whistles.
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Seasonality

Observations taken throughout the year may exhibit seasonality.
In our dataset the boys were measured in different months of the
year, as shown in a plot of season by occasion
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A simple model where a seasonal component has amplitude α and
phase φ can be written as

α cos(t + φ) = α1 cos(t)− α2 sin(t)

In this dataset the coefficient of the sine term was very close to
zero and was omitted from the model.

6 / 22 Germán Rodŕıguez Pop 510



Aside on cosines

For those of us who need a refresher, here’s a plot of cos(t) for
t ∈ (0, 4π) in and out of phase
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To compute the cosine term we simply scale season to the range
(0, 2π), calculate

sc = cos(π seas/6)

and add the resulting cosine to the fixed part of the model.
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The standard model

As this point we are ready to reproduce the results in Table 6.4 in
Goldstein (1995, p.93).

Please refer to the website for the code used to run the model in
Stata and R. The fixed part of the model has linear, quadratic,
cubic and quartic terms on age plus a seasonality term, while the
random part lets the intercept and linear and quadratic age terms
vary randomly across children.

How would you interpret the coefficient of the seasonality
component? How much do you expect a child to grow, on average,
between ages 12.25? and 13.25? What’s the correlation between
the heights of the same child at those two ages? Do you think the
model assumptions so far are reasonable?
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Serial correlation

With clustered data a random-intercept model assumes an
exchangeable correlation structure, where any two outcomes have
the same correlation, arising from the fact that they share ai .

With longitudinal data this assumption is suspect because
outcomes that are closer in time are likely to be more highly
correlated than observations taken further apart.

Fortunately, we can extend the model to allow for serially
correlated residuals. In particular, we will assume that

cov(eit1 , eit2) = σ2
ee
−γ(t2−t1)

which reduces to the variance σ2
e when t1 = t2 and decays

exponentially to zero as the gap between the times increases.

Both Stata and R allows for this form of residual correlation,
among others.
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The full model

The computing logs show how to fit this fourth degree polynomial
with seasonality, with the level, gradient and curvature by age
varying across children, and residuals that are serially-correlated
within each child.

Here are (somewhat abbreviated) results from Stata

Wald chi2(5) = 502.97 -----------------------------------------------------

Log likelihood = -305.76024 Random-effects Parameters | Estimate Std. Err.

-----------------------------+-----------------------

-------------------------------------- id: Unstructured sd(age) | 1.63716 .2346991

height | Coef. Std. Err. sd(age2) | .7579632 .152763

-------------+------------------------ sd(_cons) | 7.840658 1.088743

age | 6.190767 .3508537 corr(age,age2) | .6869741 .1494221

age2 | 2.16322 .4493732 corr(age,_cons) | .6177878 .1243386

age3 | .386329 .1690328 corr(age2,_cons) | .2489086 .2226974

age4 | -1.548466 .4293597 -----------------------------+------------------------

sc | -.2360017 .0673323 Residual: Exponential rho | .0010001 .0032199

_cons | 148.911 1.539373 sd(e) | .484354 .0478213

-------------------------------------- -----------------------------------------------------

We will examine these results largely through graphs.
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Fitted grow curves

The figure shows the population average curve and the fitted
growth curves for each child, using ML to estimate the fixed
coefficients and EB for the random coefficients
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Fitted Growth Curves

The curves reflect substantial variation in growth curves across
children, with large differences in average height.

11 / 22 Germán Rodŕıguez Pop 510



Interpreting seasonality

The coefficient of the cosine term or amplitude is estimated at
−0.236. We can plot the estimated curve −0.236 cos(πx/6) for
x ∈ (0.84, 9.36), the range in the data.
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The estimates show that boys grow about half a centimeter more
in the summer than in the winter.
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Interpreting serial correlation

For residuals with a gap of t the serial correlation is ρ(t) = e−γt .
Stata reports ρ(1) = 0.001 so γ = 6.91. We plot ρ(t) = e−γt for t
in (0, 1), but label the gap in months:
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Serial Correlation for Residuals

The correlation between residuals is 0.178 after 3 months, and falls
to 0.032 after 6 months.
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Correlation among outcomes

It is important to understand that the serial correlation we have
estimated is just one aspect of the correlation among outcomes in
the same child, the part due to correlated residuals.

A larger part of the correlation comes from the latent trajectory, or
the fact that measurements on a child on different occasions share
the random intercept and slopes for the linear and quadratic terms.

In fact, the correlation between heights measured at ages 11.25
and 11.5, corresponding to the first two occasions, is estimated as
0.996 according to the model. We’ll see in a minute how to obtain
this result from first principles.

The observed correlation is also 0.996. The easiest way to verify
this fact is to change the data to wide format.
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Calculating correlations

The outcomes at ages 11.25 and 11.5 for child i involve the
random effects ui = (ai , bi , ci , ei1, ei2)′.

The variances and covariances of these terms can be extracted
from the output and turn out to be

V =


61.476
7.930, 2.689
1.479, 0.852, 0.575
0, 0, 0, 0.235
0, 0, 0, 0.042, 0.235


The random part of the outcomes for the same child at the given
ages is a linear combination of ui with coefficients

C =

[
1, −1, 1, 1, 0
1, −0.75, 0.752, 0, 1

]
The variance-covariance of ui is then CVC ′.
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Testing variances of random coefficients

There is no question that the curves vary by child. The table below
shows reductions in deviance starting from the population average
model, letting the intercept, slope and curvature be random, and
finally allowing for serial correlation of residuals.

Model log L χ2 df
Fixed coefficients -819.79
Random intercept -463.62 712.33 1
Random slope -333.26 260.73 2
Random curvature -306.79 52.93 3
Serial correlation -305.76 2.06 1

All tests are on a boundary of the parameter space and thus are
conservative. All are significant except for serial correlation.

You may want to try using REML estimation to see if that makes a
difference in light of the modest sample size.
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Three-level Models

The computing logs have an analysis of three-level panel data with
7230 observations on 1721 students in 60 schools.

The outcome of interest is math
achievement. The data were
collected over six years from first
to sixth grade, but not all
students have six outcomes, so
the panel is not balanced.

School

Student

Year

...

...

...

The data come from Chapter 4 in the HLM 6 manual and came in
three files, which I merged into a single Stata file called egm.dta.
The analysis may be found in egm.html.
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A Growth Curve

The models considered in the analysis include

1 a three-level variance components model, which helps
introduce intra-level correlations,

2 a growth-curve model where math scores increase linearly with
year, with intercept and slopes that vary at the student and
school level, and

3 a model where a student’s growth curve depends on ethnicity,
with different intercept and slopes for whites, blacks and
hispanics, and the school average curve depends on the
percent of students with low income

We follow Bryk and Raudenbush developing the models
level-by-level, which helps determine which cross-level interactions
to include.
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Dynamic models

Consider a lagged-response model, where the outcomes at previous
times are treated as covariates. For example in an autoregressive
lag-1 or AR-1 model:

Yit = α + βxit + γyi ,t−1 + eit

where eit ∼ N(0, σ2) with independence across occasions.

This model should only be used if it makes sense to control the
effect of the covariates on previous outcomes, or if the effect of the
lagged response is itself of interest.

With more than two occasions some outcomes appear on both the
right and left-hand sides of the equation. If the process started long
before the first occasion and γ < 1 the process will be stationary.

A related approach controls for baseline conditions.

19 / 22 Germán Rodŕıguez Pop 510



Dynamic models with random effects

The previous model is often extended by adding a random effect at
the individual level to account for correlated residuals

Yit = (α + ai ) + βXit + γYi ,t−1 + eit

This model poses special challenges because the lagged outcome is
necessarily correlated with the random effect.

Anderson and Hsiao proposed an instrumental variables estimator
using a second-order lag.

Arellano and Bond proposed a generalized method of moments
estimator using additional instruments.

These approaches are both implemented in Stata, but fall beyond
the scope of the course.
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The Generalized Linear Mixed Model

All the multilevel models considered in this part of the course are
special cases of the GLMM

y
n×1

= X
n×p

β
p×1

+ Z
n×q

u
q×1

+ e
n×1

where X is the design matrix for the fixed effects β, Z is the design
matrix for the random effects u ∼ Nq(0,Ω) and e ∼ Nn(0, σ2I) is
the error term. Usually Ω is block-diagonal by level.

In this model the mean and variance are

E (y) = Xβ and var(y) = ZΩZ′ + σ2I

Exercise: Write down the model matrices for a two-level
random-intercept model with 2 observations per group.
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GLMM Estimation

If the parameters in Ω are known, or more generally conditional on
estimates of those parameters, the maximum likelihood estimator
of β can be obtained by GLS

β̂ = (X′V−1X)−1X′V−1y

Inversion of V takes advantage of its block diagonal structure, so
the calculations are reasonably straightforward.

Using this estimator in the multivariate normal likelihood yields a
profile likelihood that can then be maximized w.r.t. the parameters
in Ω. Goldstein showed how this step can also be done using GLS.

Estimation proceeds by alternating the two steps and usually
converges very quickly. Harville showed how the same steps can be
adapted to use REML as proposed by Patterson and Thompson.
The Longford book has details.
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