
Multilevel Models
3. Random Coefficients

Germán Rodŕıguez
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Group-specific regressions

We return to our analysis of language scores by verbal IQ in 131
schools in the Netherlands.

A simple approach to the analysis of the data would fit separate
regressions in each school using the model

Yij = αi + βixij + eij

where eij ∼ N(0, σ2
e ), fitted just to school i (so in fact the error

variance could vary across schools).

This is easy to do as shown in the computing logs, where we use
the statsby command in Stata and dplyr’s group by() in R, to
run a simple linear regression in each school and gather the
intercepts and slopes.
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School regression lines

We can then plot the 131 regression lines
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Some of these lines are based on relatively small schools and are
thus rather poorly estimated.
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Random-coefficient models

An alternative approach is to view the intercept and slope of the
regression lines as random:

Yij = (α + ai ) + (β + bi )xij + eij

where α is the average intercept and β the average slope, ai is a
school effect on the intercept and bi is a school effect on the slope,
and eij is the usual error term, with eij ∼ N(0, σ2

e ).

The distribution of the school effects on the intercept and slope is
bivariate normal with mean zero and a general variance-covariance(

ai
bi

)
∼ N2(

(
0
0

)
,

(
σ2
a σab
σab σ2

b

)
),

that allows for correlation between the intercept and slope effects.
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Random Slopes

The figure below shows the model in graphical form
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Interpretation of the intercept (and its variance) depends on the
predictor and is more natural if the predictor is centered.
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Moments and variances

In this model the expected outcome is a linear function of xij
reflecting the average or pooled regression line

E (Yij) = α + βxij

The variance of the outcome turns out to be

var(Yij) = σ2
a + 2xijσab + x2

ijσ
2
b + σ2

e

and depends on xij , so the model is heteroscedastic.

The covariance between two outcomes in the same group, is

cov(Yij ,Yik) = σ2
a + (xij + xik)σab + xijxikσ

2
b, j 6= k

and depends on the two values of the predictor, xij and xik .
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Intraclass correlation

As a result, the intraclass correlation is now a function of the
covariates! With one predictor

ρi ,jk =
σ2
a + (xij + xik)σab + xijxikσ

2
b√

σ2
a + 2xijσab + x2

ijσ
2
b + σ2

e

√
σ2
a + 2xikσab + x2

ikσ
2
b + σ2

e

To obtain a single-number summary we can compute the intraclass
correlation for ‘average’ individuals

ρ̄ =
σ2
a + 2x̄σab + x̄2σ2

b

σ2
a + 2x̄σab + x̄2σ2

b + σ2
e

where x̄ is the overall mean of the predictor.

If the predictor is centered we obtain a more familiar result

ρ̄ =
σ2
a

σ2
a + σ2

e
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Language scores: model

The computing logs show how to fit a random-slope model to the
data on language scores by verbal IQ in Stata and R. In Stata the
command is

mixed langpost iqvc || schoolnr: iqvc, ///

mle covariance(unstructured)

The two vertical bars separate the fixed and random parts of the
model. We treat the constant and verbal IQ as random at the
school level. It is important to request an unstructured covariance
matrix, otherwise Stata assumes independence.

In R we call the lmer() function with a two-sided formula

lmer(langpost ∼ iqvc + (iqvc | schoolnr),

data = snijders, REML = FALSE)

Here it is important to request ML as the default in R is REML.
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Language scores: estimates

The average relationship across schools is

E (Yij) = 40.71 + 2.53(x − x̄)

but we find substantial variation across schools in both the
intercept and slope, with

σ̂2
a = 3.0562 and σ̂2

b = 0.4582

There’s also a negative correlation between the intercept and slope
(not to be confused with the intraclass correlation)

rab = −0.817

The large negative correlation is not unusual, which is why it is
important to use an unstructured covariance matrix.

Finally, the error variance is estimated as

σ̂2
e = 6.442
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Language scores: intraclass correlation

The correlation between the language scores of two students with
average verbal IQ in the same school is

ρ̂(x̄) =
3.062

3.062 + 6.442
= 0.184

which also means that 18.4% of the variance in language scores at
average IQ occurs between schools.

Exercise: calculate the intraclass correlation for different values of
verbal IQ and plot it.

You should find that the correlation in language scores for children
in the same school who have verbal IQs one standard deviation
below the overall mean is 0.279. What happens above the mean?
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Testing Hypotheses

Tests of hypotheses proceed along the same general lines as in
random-intercept models. Here are the highlights:

We can test the significance of the average effect of verbal IQ
using a Wald test. We get z = 31.0, equivalent to χ2

1 = 962.0.

We can test the significance of the variance of the slope
across schools using a likelihood ratio test. Removing verbal
IQ from the random part saves two parameters. Equivalently,
σ2
a = 0 implies σab = 0, so we test that both are zero. We get
χ2 = 21 using ML. The test can also be done using REML.

Because the above test is on a boundary of the parameter
space it does not have the usual χ2

2 distribution. Stata treats
it as conservative, whereas malmus recommend using a
50:50 mixture of χ2

1 and χ2
2. Either way it is highly significant.

Removing verbal IQ from the fixed and random parts of the
model saves 3 parameters. The LR test is conservatively χ2

3.
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Estimating intercepts and slopes

The ML estimates of ai and bi can be obtained by calculating the
residuals from the fixed part of the model

yij − (α̂ + β̂xij)

and then fitting school-specific regressions of those residuals on xij
by OLS.

The EB estimates can be obtained in Stata by using predict bi

ai, reffects after mixed (warning: Stata outputs slopes before
intercepts) and in R by calling ranef().

Both methods treat the fixed effects as known and substitute
estimates. Typically the EB estimates show shrinkage towards zero
compared to the ML estimates.
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ML and EB estimates

The following figure compares ML and EB estimates of the school
effects on the intercept and slope for the language score data
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We see substantial shrinkage of the intercept effects for a few
small schools, and of the slope effects all around.

Note: The online log has very similar plots comparing empirical Bayes with school-specific regressions
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Predicted regression lines

We can also plot the predicted regression lines for all schools
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The figure shows that school differences in language scores are
more pronounced at low verbal IQs than at the high end.
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Level-2 predictors

We now consider introducing a level-2 predictor zi , illustrated by
school SES. As usual I center the predictor on the overall mean,
but will leave that implicit to simplify the notation.

We can introduce school SES as a main effect

Yij = (α + ai ) + (β + bi )xij + γzi + eij

We can also interact school SES with student verbal IQ

Yij = (α + ai ) + (β + bi )xij + γzi + δxijzi + eij

The additional term is called a cross-level interaction.

Estimation and testing proceeds as usual, with main effects and
interactions in the fixed part interpreted in the standard way.
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Level-specific models

There’s another way to think about random-coefficient models.
We start with a level-1 model

Yij = Ai + Bixij + eij

where we predict language scores as a function of verbal IQ with
coefficients that vary by school plus an error term.

We then add a level-2 model for the coefficients

Ai = α + ai , and
Bi = β + bi

In this case the intercept and slope are viewed as just a constant
plus a residual; in other words we have null models at level 2.

Substituting the second set of equations on the first yields the
random-slope model in slide 4.
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Level-2 models

We now introduce school level SES as a predictor in the level-2
equations, writing

Ai = α0 + α1zi + ai , and
Bi = β0 + β1zi + bi

where the level-2 residuals ai and bi have a bivariate normal
distribution with mean zero and unstructured covariance matrix.

In this model both the intercept and slope are linear functions of
school SES, but we could let just the intercept depend on SES.

Substituting these equations in the original model gives

Yij = (α0 + α1zi + ai ) + (β0 + β1zi + bi )xij + eij

and rearranging terms leads back to the model with a cross-level
interaction in slide 15.
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Level-specific and reduced forms

The package HLM uses the level-specific formulation of the model,
whereas Stata and R use the reduced form and requires the user to
specify the cross-level interaction terms, but the models are
equivalent and the estimates are exactly the same.

malmus notes that users of HLM tend to include more cross-level
interactions than users of Stata because they are built-in.

In the computing logs we fit a model using centered verbal IQ,
centered school SES, and the interaction term. In Stata

mixed langpost iqvc sesc iqvcXsesc ///

|| schoolnr: iqvc, mle covariance(unstructured)

The specification of the random part is exactly the same as before
we introduced SES, but the fixed part now has the main effect of
SES and its cross-level interaction with verbal IQ.
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Fixed effects

Here are the ML estimates of the fixed effects

Wald chi2(3) = 1059.58

Log likelihood = -7607.8383 Prob > chi2 = 0.0000

------------------------------------------------------------------------------

langpost | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

iqvc | 2.515011 .0789096 31.87 0.000 2.360351 2.669671

sesc | .2410466 .0658997 3.66 0.000 .1118856 .3702077

iqvcXsesc | -.0470625 .0174818 -2.69 0.007 -.0813263 -.0127988

_cons | 40.71326 .2910762 139.87 0.000 40.14276 41.28376

------------------------------------------------------------------------------

These can be written as the following estimated equation

E (Yij |ai , bi ) = (40.713 + 0.241zi + ai ) + (2.515− 0.047zi + bi )xij

The expected score for an average student in the average school is 40.71,

it is 1.07 higher if school SES is one sd more, 5.20 higher when verbal IQ

is one sd more, and 5.84 higher if both conditions obtain. Clearly, verbal

IQ makes more of a difference in schools with low SES.

Note: Verbal IQ has sd=2.07 and school SES has sd=4.43
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Random effects

Here are the parameters for the random part

------------------------------------------------------------------------------

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

-----------------------------+------------------------------------------------

schoolnr: Unstructured |

sd(iqvc) | .3859035 .1208045 .2089373 .7127571

sd(_cons) | 2.86771 .2384242 2.436495 3.375242

corr(iqvc,_cons) | -.8008473 .2294731 -.9821521 .1519006

-----------------------------+------------------------------------------------

sd(Residual) | 6.443356 .1005435 6.249277 6.643462

------------------------------------------------------------------------------

LR test vs. linear regression: chi2(3) = 215.75 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

The estimates are similar to the previous model, with substantial
effects of unobserved school characteristics after accounting for
school SES. These effects exceed those of SES.

The intraclass correlation for average students in the average
school is 0.165, and now represents variation in the scores of
average students across schools with the same SES.
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Predicted school lines

We can calculate EB estimates of the random effects as usual and
plot the predicted school-level regressions
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Random Coefficient Model with SES

The figure looks very similar to the previous analysis, with smaller
school differences at higher verbal IQs, all at observed SES.
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Empirical Bayes estimates

We can also plot the empirical Bayes estimates of the school
effects on the intercept and slope
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The prior correlation is −0.801 and the posterior correlation is
−0.971. Schools with higher language scores at average verbal IQ
show smaller differences by verbal IQ.
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Observed and unobserved effects

To compare observed and unobserved school effects we look at
four school scenarios, setting SES one sd above/below the mean
and the correlated random effects one sd above/below the mean.
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Predicted Regressions for Four Scenarios

Clearly there are large unobserved school effects on language scores
which persist at high verbal IQs.
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