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Multinomial Logit Model

Recall the multinomial logit model, where the probability of falling
in category k for individual i is

Pr{Yi = k} =
ex

′
iβk∑

v e
x
′
iβv

To identify the model we choose a category as reference and set
βr = 0 so the model has K − 1 sets of coefficients and is identified.

The k-th linear predictor x ′
iβk is the log-relative probability of

category k relative to r (also called the log-odds of k over r).

The model can be interpreted in terms of random utilities where
the utility of choice k for individual i follows the linear model

Uik = x
′
iβk + eik

where the eik are i.i.d. extreme value and Uir = 0 serves as a
baseline. Maximizing the expected utility leads to choosing
category k with the probability given above.
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Random-Intercept Multinomial Logits

We now extend the model to two-level data so Yij is the outcome
for individual j in group i . We introduce K random intercepts per
individual, so the conditional probability of falling in category k is

Pr{Yi = k |ai} =
eaik+x

′
iβk∑

v e
aiv+x

′
iβv

but set ar = 0 so we are left with K − 1 random effects assumed
to have a multivariate normal distribution with mean vector zero
and arbitrary variance-covariance matrix.

The log-relative conditional probability of category k over r given
the random effects aik for k 6= r is then

log
Pr{Yik |ai}
Pr{Yir |ai}

= aik + x
′
iβk

so aik can be interpreted as a latent propensity to choose category
k over r net of the covariates.
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The McKinney Homeless Study

We will illustrate the methods using the McKinney Homeless study,
which has generated interesting longitudinal data on 361 at-risk
individuals randomly assigned to one of two types of case
management (comprehensive vs. traditional) and one of two levels
of access to independent housing using “Section 8” certificates.

The outcome is housing status at baseline and at 6, 12 and 24
months, classified as streets/shelters, community housing, or
independent housing. The predictors of interest include time and
sec8, a dummy variable coded one for the treatment group.

The data have been analyzed by Don Hedeker, author of the
mixno package* for fitting mixed multinomial models using
Gauss-Hermite quadrature. We will fit essentially the same model,
although for simplicity we will treat time (coded 0 to 3) linearly
instead of using dummy variables.

*https://www.jstatsoft.org/article/view/v004i05
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Population Average Effects

For reference purposes I fitted a standard multinomial logit model
estimating population average effects (with uncorrected standard errors).

. mlogit status c.sec8##c.time, base(0)

Multinomial logistic regression Number of obs = 1,289

LR chi2(6) = 316.57

Prob > chi2 = 0.0000

Log likelihood = -1223.16 Pseudo R2 = 0.1146

status Coef. Std. Err. z P>|z| [95% Conf. Interval]

street (base outcome)

community

sec8 .2395584 .2130131 1.12 0.261 -.1779395 .6570564

time .7961881 .1075957 7.40 0.000 .5853045 1.007072

c.sec8#c.time -.5180044 .1576099 -3.29 0.001 -.8269142 -.2090947

_cons -.2109418 .1428502 -1.48 0.140 -.4909231 .0690395

independent

sec8 1.157348 .2551718 4.54 0.000 .6572208 1.657476

time 1.138287 .123074 9.25 0.000 .8970665 1.379508

c.sec8#c.time -.2308719 .1637933 -1.41 0.159 -.5519008 .090157

_cons -1.405489 .1964876 -7.15 0.000 -1.790598 -1.02038

We’ll compare these to Bayes estimates.
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Maximum Likelihood via SEM

Stata does not have a command for multinomial logit models with
random effects, but Rebecca Pope explains how to fit the model
using structural equation models via gsem in the Stata Newsletter
http://www.stata.com/stata-news/news29-2/xtmlogit/ using

gsem (1.status <- sec8 time secXtime RI1[id]) ///

(2.status <- sec8 time secXtime RI2[id]), mlogit}

The model defines two latent variables that vary across groups to
capture random effects for each equation. The variances and
covariance of these random effects are

var(RI1[id]) 1.744592 .4753894 1.022697 2.976052

var(RI2[id]) 3.818815 .7779019 2.56175 5.692728

cov(RI2[id],RI1[id]) 1.701683 .5029326 3.38 0.001 .7159536 2.687413

This implies a correlation of 0.66 between the two latent variables
representing the contrast of community over street and of
independent over street.
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Subject-Specific Effects

The estimates of the fixed effects are shown below

Coef. Std. Err. z P>|z| [95% Conf. Interval]

0.status (base outcome)

1.status

sec8 .3835373 .2829853 1.36 0.175 -.1711037 .9381783

time 1.015074 .1329061 7.64 0.000 .7545826 1.275565

secXtime -.5786798 .181297 -3.19 0.001 -.9340153 -.2233442

RI1[id] 1 (constrained)

_cons -.2063278 .1926945 -1.07 0.284 -.5840022 .1713466

2.status

sec8 1.60725 .3791572 4.24 0.000 .8641157 2.350384

time 1.530787 .1579142 9.69 0.000 1.221281 1.840293

secXtime -.2223493 .1998801 -1.11 0.266 -.6141072 .1694085

RI2[id] 1 (constrained)

_cons -2.047767 .3034708 -6.75 0.000 -2.642559 -1.452975

There is a trend away from the street, towards community housing
in the control group and towards independent housing in the
Section 8 group.
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Multinomial Logit Models via Stan

Let us now explore fitting these models in a Bayesian framework
using Stan. We start with the standard multinomial logit model.

There is an example in the Stan manual using one equation per
outcome, a model that they note is identified only “if there are
suitable priors on the coefficients”. A faster and in my view
preferable alternative is to work with only K − 1 equations for K
response categories, as we did for maximum likelihood.

We define the coefficients to be estimated as a K − 1 by P matrix,
and then add a row of zeroes to match the reference category in a
new K by P matrix defined in the transformed parameters block.

The function used to convert multinomial logits to probabilities is
called softmax in the machine learning literature and Stan. The
newer function categorical logit() calls that implicitly.

8 / 18 Germán Rodŕıguez Pop 510



Stan Code for Multinomial Logit

sd_model <- ’

data {

int K; // number of outcome categories

int K1; // K-1

int N; // number of observations

int P; // number of predictors a.k.a. D

int y[N];// outcome, coded 1 to K for each obs

vector[P] x[N]; // predictors, including constant

}

transformed data {

row_vector[P] base;

base = rep_row_vector(0, P);

}

parameters {

matrix[K1,P] beta;

}

transformed parameters {

matrix[K, P] betap;

betap = append_row(base, beta);

}

model {

// prior for beta (vectorized)

for(k in 1:K1) {

beta[k] ~ normal(0,5);

}

// likelihood of outcome

for(n in 1:N) {

y[n] ~ categorical_logit(betap * x[n]);

}

}

’
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The Stan Output

And here are the results of running the model

mlogit <- stan(model_code=sd_model,model="mlogit",data=sd_data,iter=2000,chains=2)

> print(mlogit, pars="beta", digits_summary=3, probs=c(0.025,0.5,0.975))

Inference for Stan model: mlogit.

2 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=2000.

mean se_mean sd 2.5% 50% 97.5% n_eff Rhat

beta[1,1] -0.216 0.005 0.148 -0.503 -0.216 0.070 872 1.001

beta[1,2] 0.246 0.007 0.218 -0.184 0.249 0.662 966 1.000

beta[1,3] 0.805 0.004 0.109 0.602 0.804 1.026 933 1.004

beta[1,4] -0.525 0.005 0.159 -0.832 -0.526 -0.213 919 1.003

beta[2,1] -1.421 0.007 0.201 -1.835 -1.423 -1.044 724 1.000

beta[2,2] 1.171 0.009 0.263 0.669 1.174 1.684 878 1.000

beta[2,3] 1.151 0.005 0.124 0.906 1.154 1.386 669 1.002

beta[2,4] -0.239 0.006 0.166 -0.558 -0.241 0.086 830 1.002

Samples were drawn using NUTS(diag_e) at Tue May 01 13:47:57 2018.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

The measures of effective sample size are all reassuring and the
values of Rhat are close to 1 as they should be at convergence.
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Comparison of Maximum Likelihood and Bayes

Here’s a side-by-side comparison of ML and Bayes estimates by
equation

Variable Community/Street Independent/Street
Name ML Bayes ML Bayes

sec8 0.240 0.246 1.157 1.171
time 0.796 0.805 1.138 1.151
interaction -0.518 -0.525 -0.231 -0.239
constant -0.211 -0.216 -1.405 -1.421

I think the agreement is quite remarkable. We are thus encouraged
to try adding random effects.
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Random Intercepts in Multinomial Logits

We will add two correlated random intercepts for each individual,
representing unobserved effects on the propensity to be in
community and in independent housing rather than on the street.
To define the model I generally followed the Stan manual.

We will define the multivariate normal distribution in terms of a
vector of scale parameters and a matrix of correlations, which are
the actual parameters to be estimated, just as we did for the
random slope ordered logit model. This time, however, I defined
the vector of means in a transformed data block.

In the model block we define the priors and hyper-priors for the
random effects. The random effects are multi normal. For the
scales of the random effects I tried half cauchy(0, 2.5) priors,
but got better results with uniforms. For the correlation I used a
LKJ prior with parameter 2; for more on this prior see
http://www.psychstatistics.com/2014/12/27/d-lkj-priors/.
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Stan Code for Random-Effects Multinomial Logit

The model is long enough that I will present it in two parts. Here’s
Part 1 showing the data, transformed data and parameters.

sd_model <- ’

data {

int K; // number of outcome categories

int K1; // K-1

int N; // number of observations

int P; // number of predictors a.k.a. D

int y[N]; // outcome, coded 1 to K for each obs

vector[P] x[N]; // predictors, including constant

int G; // number of groups

int map[N]; // map obs to groups

}

transformed data {

vector[K1] zero;

real baseline;

zero = rep_vector(0, K1);

baseline = 0;

}

parameters {

matrix[K1,P] beta; // fixed effects

corr_matrix[K1] omega; // ranef correlations

vector<lower=0,upper=10>[K1] sigma; // ranef scales

vector[K1] u[G]; // random intercepts

}

...
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Stan Code for Random-Effects Multinomial Logit

And here’s Part 2, showing transformed parameters and the model
block:

transformed parameters{

cov_matrix[K1] V;

V = quad_form_diag(omega, sigma);

}

model {

// prior for beta (vectorized)

for(k in 1:K1) {

beta[k] ~ normal(0,5);

}

// prior/hyper prior for random effects

// sigma ~ cauchy(0, 2.5);

omega ~ lkj_corr(2);

for(g in 1:G) {

u[g] ~ multi_normal(zero, V);

}

{ // local block for linear predictor

vector[K] xb;

for(n in 1:N) {

xb = append_row(baseline, beta*x[n] + u[map[n]]);

y[n] ~ categorical_logit(xb);

}

}

}’

The local block is used to add a zero to the linear predictor.
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Results

This is the call used to run the model

rimlogit <- stan(model_code=sd_model,model="rimlogit",data=sd_data,iter=2000,chains=2)

And these are the results

> print(rimlogit, digits_summary=3, probs=c(0.025,0.5,0.975),

+ pars=c("beta","sigma","omega[1,2]"))

Inference for Stan model: rimlogit.

2 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=2000.

mean se_mean sd 2.5% 50% 97.5% n_eff Rhat

beta[1,1] -0.208 0.004 0.197 -0.602 -0.207 0.175 2000 0.999

beta[1,2] 0.363 0.006 0.291 -0.193 0.357 0.944 2000 1.001

beta[1,3] 1.018 0.005 0.133 0.770 1.016 1.281 865 1.001

beta[1,4] -0.583 0.004 0.175 -0.919 -0.587 -0.252 2000 1.001

beta[2,1] -2.056 0.008 0.298 -2.633 -2.048 -1.477 1260 1.000

beta[2,2] 1.584 0.009 0.371 0.872 1.576 2.301 1566 1.000

beta[2,3] 1.535 0.005 0.156 1.236 1.530 1.852 1064 1.000

beta[2,4] -0.215 0.004 0.194 -0.616 -0.215 0.142 2000 1.000

sigma[1] 1.339 0.015 0.196 0.943 1.333 1.732 172 1.008

sigma[2] 1.965 0.011 0.198 1.620 1.957 2.378 322 1.002

omega[1,2] 0.625 0.006 0.092 0.427 0.632 0.778 254 1.000

Samples were drawn using NUTS(diag_e) at Tue May 01 10:58:04 2018.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).
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Comparison of Estimates

Here are the maximum likelihood and Bayesian estimates

Variable Community/Street Independent/Street
Name ML Bayes ML Bayes

sec8 0.384 0.363 1.620 1.584
time 1.015 1.018 1.536 1.535
interaction -0.579 -0.583 -0.220 -0.215
constant -0.206 -0.208 -2.079 -2.056

scale 1.321 1.339 1.954 1.975
correlation 0.659 0.625

The two sets of estimates are remarkably close, as one would
expect from generally non-informative priors.

I report the posterior means of the scale parameters and
correlation coefficient rather than the variances and covariance, so
for comparability I translated the maximum likelihood results.
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Trace Plots and Posterior Densities

We can extract any coefficient using extract. Here’s the
correlation of the random effects

r <- as.data.frame(extract(rimlogit, pars="omega[1,2]"), permute=FALSE)

And we can then do trace and/or density plots
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We have a nice fuzzy caterpillar and the posterior is fairly
symmetric around the mean of 0.6.

17 / 18 Germán Rodŕıguez Pop 510



Calculating Predicted Probabilities

We can also use the samples to calculate any function of interest.
Here’s code to compute the predicted probabilities for the average
person at time 3 under control and “Section 8” conditions.

> ep <- as.data.frame(extract(rimlogit, "beta"))

> names(ep)<-c("cons1","cons2","sec1","sec2","time1","time2","int1","int2")

> u0 = cbind(0, ep[,"cons1"]+ep[,"time1"]*3, ep[,"cons2"]+ep[,"time2"]*3)

> p0 = colMeans(exp(u0)/rowSums(exp(u0)))

> u1 = u0 + cbind(0, ep[,"sec1"]+ep[,"int1"]*3, ep[,"sec2"]+ep[,"int2"]*3)

> p1 = colMeans(exp(u1)/rowSums(exp(u1)))

> rbind(p0,p1)

[,1] [,2] [,3]

p0 0.03376637 0.5530774 0.4131562

p1 0.02773570 0.1153388 0.8569255

The probability of being in independent housing at the end of
follow up for the average person is 41% in the control group and
86% in the Section 8 group, with only 3% on the street.

Try doing a trace and/or density plot, or constructing a 95%
credible interval for the probability of independent housing.
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