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Categorical Data

Our final unit concerns models for categorical data. We will
consider ordered logit models first, which are simpler, and then
turn our attention to multinomial logit models.

malmus notes that at the time of writing there were no official
Stata commands for fitting multilevel models for categorical data,
but version 14 solved the problem for ordered logits with
meologit. As for multinomial logit models, it turns out that they
can be fit as structural equation models with gsem, as noted by a
Stata blogger.

On the R ecology I haven’t found any package to fit multilevel
ordered or multinomial logit models by maximum likelihood, but
there are plenty of Bayesian solutions. We will use this opportunity
to gather a bit more experience using Stan.
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Ordered Logit Models

Recall than in an ordered logit model we focus on the logit of
cumulative probabilities, so given an outcome Yij for the j-th
observation in group i a random-intercept model would be

Pr{Yij |ai > k} = logit−1(ai + x
′
ijβ − θk)

where ai ∼ N(0, σ2
a) is a normally-distributed random effect with

mean 0 and variance σ2
a .

The model may also be written in terms of a latent variable
following a linear model

Y ∗ij = ai + x
′
ijβ + eij

where eij is standard logistic and Yij > k ⇐⇒ Y ∗ij > θk , so the θ’s
may be interpreted as threshold parameters.

The equivalence follows from substituting the latent variable in
Pr{Y ∗ij > θk} and using the symmetry of the logistic distribution.
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Treating Schizophrenia

We’ll analyze the example in malmus, a randomized trial
comparing four drugs and a placebo and measuring the severity of
illness using the Inpatient Multidimensional Psychiatric Scale
(IMPS) at various intervals since randomization.

We combine all four drugs in a single “treated” group and recode
the outcome into four severity categories: normal or borderline
(≤ 2.4), moderately ill (2.5− 4.4), markedly ill (4.5− 5.4) and
severely ill (5.5− 7), as done in the original analysis.

As always, it pays to examine the data before analysis. Patients
can be seen for up to seven weeks, but the most common pattern
has observations in weeks 0, 1, 3 and 6. In fact no patient has
more than 4 assessments.
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Plotting Cumulative Proportions

A useful diagnostic plot shows the empirical logits of the
proportions above each response category by week. Because weeks
2, 4 and 5 have very few assessments we omit them from the plot.
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The graph shows that the treatment is generally beneficial but the
trajectories are not linear. We will follow the original authors and
work with the square root of weeks as the time scale.
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Ordered Logits

Obviously we will need to interact treatment and time to capture
treatment effects on the trajectory of each patient.

Here is a baseline ordered logit model representing population
average effects (with uncorrected standard errors)

Ordered logistic regression Number of obs = 1,603

LR chi2(3) = 501.26

Prob > chi2 = 0.0000

Log likelihood = -1878.0969 Pseudo R2 = 0.1177

------------------------------------------------------------------------------

impso | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

sqrtweek | -.5366467 .110815 -4.84 0.000 -.7538401 -.3194534

treatment | -.0006043 .1883287 -0.00 0.997 -.3697218 .3685132

interaction | -.7509692 .1276787 -5.88 0.000 -1.001215 -.5007235

-------------+----------------------------------------------------------------

/cut1 | -3.807279 .1898591 -4.179396 -3.435162

/cut2 | -1.760167 .1702695 -2.093889 -1.426445

/cut3 | -.4221112 .1636329 -.7428258 -.1013965

------------------------------------------------------------------------------
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Random-Intercept Ordered Logits

Next we add a patient-specific random intercept, assumed
independent of the covariates across patients.
meologit impso weeksqrt treatment interact || id:

Mixed-effects ologit regression Number of obs = 1,603

Group variable: id Number of groups = 437

...

Integration method: mvaghermite Integration pts. = 7

Wald chi2(3) = 480.06

Log likelihood = -1701.3811 Prob > chi2 = 0.0000

------------------------------------------------------------------------------

impso | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

weeksqrt | -.7657629 .1307697 -5.86 0.000 -1.022067 -.509459

treatment | -.0603847 .3136873 -0.19 0.847 -.6752006 .5544311

interact | -1.206126 .1526656 -7.90 0.000 -1.505345 -.9069068

-------------+----------------------------------------------------------------

/cut1 | -5.860997 .3321236 -17.65 0.000 -6.511947 -5.210046

/cut2 | -2.828207 .2901595 -9.75 0.000 -3.39691 -2.259505

/cut3 | -.7103887 .2749679 -2.58 0.010 -1.249316 -.1714614

-------------+----------------------------------------------------------------

id |

var(_cons)| 3.773713 .4650158 2.964009 4.80461

------------------------------------------------------------------------------

LR test vs. ologit model: chibar2(01) = 353.43 Prob >= chibar2 = 0.0000

This model yields an intra-class correlation of 0.53 in the latent
scale.
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Interpreting Random Intercept Results

The treatment coefficient reflects initial differences and it is
reassuringly small and not significant.

The interesting coefficient is the interaction, which exponentiated
is 0.299. This indicates that the odds of begin above category 1, 2
or 3 of the IMPS are 70% lower in the treatment than in the
control group at any week after randomization.

The standard deviation of the random effect indicates very
substantial variation across patients, with the odds of being above
any category increasing seven-fold as we move up one standard
deviation from the mean with everything else the same.

We can also compute a median odds ratio exp{
√

2σaΦ−1(3/4)} as
6.37. This means that if we draw at random two patients with the
same covariates, the ratio of the odds of scoring above any given
category, when we compare the larger to the smaller odds, would
exceed 6.37 half the time.
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Random-Slope Ordered Logits

The next model allows the slope of the time variable to vary
randomly across patients. As usual we specify an unstructured
covariance matrix.

meologit impso weeksqrt treatment interact || id: weeksqrt, covariance(unstructured)

...

Wald chi2(3) = 254.29

Log likelihood = -1662.73 Prob > chi2 = 0.0000

------------------------------------------------------------------------------------

impso | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------------+----------------------------------------------------------------

weeksqrt | -.8821765 .2175176 -4.06 0.000 -1.308503 -.4558499

treatment | .0525632 .3898986 0.13 0.893 -.7116241 .8167505

interact | -1.695097 .2520524 -6.73 0.000 -2.189111 -1.201084

-------------------+----------------------------------------------------------------

/cut1 | -7.32517 .4727348 -15.50 0.000 -8.251714 -6.398627

/cut2 | -3.423091 .3857357 -8.87 0.000 -4.179119 -2.667062

/cut3 | -.8174723 .3506013 -2.33 0.020 -1.504638 -.1303064

-------------------+----------------------------------------------------------------

id |

var(weeksqrt)| 2.009688 .4179082 1.336977 3.020879

var(_cons)| 6.993466 1.313759 4.839381 10.10637

-------------------+----------------------------------------------------------------

id |

cov(_cons,weeksqrt)| -1.504658 .5300824 -2.84 0.005 -2.5436 -.4657153

------------------------------------------------------------------------------------

LR test vs. ologit model: chi2(3) = 430.73 Prob > chi2 = 0.0000
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Interpreting Random Slope Results

A comparison with the previous model yields a chi-squared of
77.24. Although the test is conservative (because we are on a
boundary of the parameter space) it is clearly highly significant.

The patient-specific odds ratio per unit of time is estimated as
0.41 in the control group and 0.07 in the treated group. Both the
intercept and slope vary substantially across patients with a
correlation of −0.40.

As malmus notes, this means that patients having more severe
schizophrenia at the start of the study tend to have a greater
decline in severity than those with less severe schizophrenia in both
the control and treatment groups.

We’ll leave as an exercise computing subject-specific and
population-average predicted probabilities by treatment and week.
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Fitting the Models in R

We now fit exactly the same models in R. I will not repeat the
graphs, but note that we can fit the standard proportional odds
logistic regression model using the function polr in the MASS

package. Given a data frame called sch the call is:

podds <- polr(impso ~ weeksqrt * treatment, data = sch)

...

> summary(podds)

...

Coefficients:

Value Std. Error t value

weeksqrt -0.5366419 0.1108 -4.842684

treatment -0.0005995 0.1883 -0.003183

weeksqrt:treatment -0.7509752 0.1277 -5.881755

Intercepts:

Value Std. Error t value

(0,2.4]|(2.4,4.4] -3.8073 0.1899 -20.0532

(2.4,4.4]|(4.4,5.4] -1.7602 0.1703 -10.3375

(4.4,5.4]|(5.4,7] -0.4221 0.1636 -2.5796

Residual Deviance: 3756.194

AIC: 3768.194

It is reassuring to see that we have the same results as in Stata.
We now try Stan.
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Ordered Logit Model in Stan

We’ll build the model in steps, starting from the standard ordered
logit model.

sch_code = ’

data {

int N; // number of observations

int K; // number of response categories

int D; // number of predictors

int<lower=1, upper=K> y[N]; // outcomes

row_vector[D] x[N]; // predictors

}

parameters {

ordered[K-1] theta;

vector[D] beta;

}

model {

for(n in 1:N) {

y[n] ~ ordered_logistic(x[n] * beta, theta);

}

}’

The code follows the Stan manual and is remarkably simple thanks
to the fact that there is an ordered data type to handle the
thresholds and an ordered logistic distribution to take care of
converting the tail probabilities into a multinomial distribution.
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Bayesian Ordered Logit Estimates

The next step was to put the data in a list and run Stan

sch_data <- list(N = nrow(sch), K = 4, D = 3,

y = as.numeric(sch$impso), x = as.matrix(sch[,c("treatment","weeksqrt","interaction")]))

ologit <- stan(model_code=sch_code, model_name="ologit", data=sch_data, iter=2000, chains=2)

I specified a few options to print the results in a convenient way

> print(ologit, digits_summary=3, probs=c(0.025,0.5,0.975))

Inference for Stan model: ologit.

2 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=2000.

mean se_mean sd 2.5% 50% 97.5% n_eff Rhat

theta[1] -3.820 0.008 0.191 -4.196 -3.825 -3.445 572 1.000

theta[2] -1.766 0.007 0.173 -2.084 -1.769 -1.419 554 0.999

theta[3] -0.423 0.007 0.167 -0.742 -0.424 -0.080 528 1.000

beta[1] 0.004 0.008 0.193 -0.364 -0.003 0.389 518 1.000

beta[2] -0.537 0.005 0.111 -0.739 -0.538 -0.315 554 0.999

beta[3] -0.757 0.005 0.129 -1.011 -0.757 -0.507 555 1.000

lp__ -1880.036 0.065 1.687 -1884.097 -1879.734 -1877.659 671 1.004

Samples were drawn using NUTS(diag_e) at Sat Apr 23 14:47:54 2016.

The Bayesian estimates are very similar to the maximum likelihood
estimates obtained earlier, so we soldier on.
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Specifying a Random Intercept Model

Things get more interesting when we add a random intercept at
the patient level. We assume that ai ∼ N(0, σ) with a U(0, 100)
prior on σ and the default priors on everything else.

sch_code = ’

data {

int N; // number of observations

| int M; // number of groups

int K; // number of response categories

int D; // number of predictors

int<lower=1, upper=K> y[N]; // outcomes

row_vector[D] x[N]; // predictors

| int g[N]; // map observations to groups

}

parameters {

ordered[K-1] theta;

vector[D] beta;

| real a[M];

| real<lower=0, upper=10> sigma;

}

model {

| a ~ normal(0, sigma);

for(n in 1:N) {

| y[n] ~ ordered_logistic(x[n] * beta + a[g[n]], theta);

}

}’

A bar on the left margin marks new or changed lines.
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Additions for Random Intercept Model

The changes to the code include

adding the number of groups and a map to the data block

adding the group random effects and σa to the parameters

defining the prior for the random effects and modifying the
linear predictor

The code assumes that the group id’s are consecutive integers,
which is not the case in this dataset. I wrote the following general
function to map group id’s when they are not the integers 1:M:

map_groups <- function(id) {

f <- table(id)

rep(1:nrow(f), f)

}

And we can then add the map to the list

sch_data$g = map_groups(sch$id))
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Running the Random Intercept Model

We can now run the model and (eventually) print the results. I
specify the parameters to be printed to omit the random effects

riologit <- stan(model_code=sch_code, model_name="riologit", data=sch_data, iter=2000, chains=2)

...

print(riologit, digits_summary=3, probs=c(0.025,0.5,0.975),

pars=c("theta[1]","theta[2]","theta[3]","beta[1]","beta[2]","beta[3]","sigma"))

Inference for Stan model: riologit.

2 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=2000.

mean se_mean sd 2.5% 50% 97.5% n_eff Rhat

theta[1] -5.882 0.018 0.329 -6.553 -5.873 -5.273 351 1.007

theta[2] -2.834 0.015 0.290 -3.420 -2.822 -2.288 383 1.004

theta[3] -0.703 0.013 0.273 -1.251 -0.694 -0.199 433 1.003

beta[1] -0.771 0.005 0.130 -1.032 -0.772 -0.519 629 1.000

beta[2] -0.043 0.015 0.308 -0.651 -0.035 0.530 409 1.003

beta[3] -1.210 0.006 0.150 -1.503 -1.208 -0.915 549 1.002

sigma 1.965 0.007 0.119 1.741 1.963 2.205 287 1.014

Samples were drawn using NUTS(diag_e) at Sat Apr 23 15:13:58 2016.

For each parameter, n_eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor on split chains (at

convergence, Rhat=1).

One again the results are very similar to the maximum likelihood
estimates, so we are encouraged to continue.
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Specifying a Random Slope Ordered Logit Model

The final step is to add a random slope. Here’s the new code:
sch_code = ’

data {

int N; // number of observations

int M; // number of groups

int K; // number of response categories

int D; // number of predictors

int<lower=1, upper=K> y[N]; // outcomes

row_vector[D] x[N]; // predictors

int g[N]; // map observations to groups

| vector[2] Zero; // means of random effects

}

parameters {

ordered[K-1] theta;

vector[D] beta;

| vector[2] u[M];

| corr_matrix[2] Omega;

| vector<lower=0>[2] sigma;

}

| transformed parameters {

| cov_matrix[2] Sigma;

| Sigma <- quad_form_diag(Omega, sigma);

| }

model {

| u ~ multi_normal(Zero, Sigma);

for(n in 1:N) {

y[n] ~ ordered_logistic(x[n] * beta +

| u[g[n]][1] + u[g[n]][2]*x[n][1], theta);

}

}’
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Additions for Random Slope Ordered Logit Model

The basic idea is that we now have bivariate normal random effects

u =

(
a
b

)
∼ N2

((
0
0

)
,

(
σ2
a , σab
σab, σ

2
b

))
with an unstructured covariance matrix. One way to parametrize
the variance-covariance matrix is in terms of non-negative standard
deviations σa, σb and a correlation matrix, which is what we do
with sigma and Omega.

We then define a transformed parameter to obtain the 2x2
covariance matrix Sigma, which can be computed from the
standard deviations and correlations using the function
quad form diag().

All that remains then is to sample the bivariate random effects
from a multivariate normal distribution and add them to the linear
predictor, remembering to multiply the slope by the time variable.
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Running the Random Slope Ordered Logit Model

We add a vector of zeroes to the data and run the model

sch_data$Zero <- c(0,0)

rsologit <- stan(model_code=sch_code, model_name="rsologit", data=sch_data, iter=2000, chains=2)

When it’s all done we print the results

Inference for Stan model: rsologit.

2 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=2000.

mean se_mean sd 2.5% 50% 97.5% n_eff Rhat

theta[1] -7.454 0.034 0.489 -8.415 -7.443 -6.542 211 1.008

theta[2] -3.485 0.018 0.393 -4.255 -3.477 -2.726 457 1.004

theta[3] -0.839 0.013 0.359 -1.553 -0.825 -0.120 792 1.001

beta[1] -0.892 0.008 0.221 -1.308 -0.892 -0.465 808 1.002

beta[2] 0.055 0.013 0.399 -0.713 0.060 0.882 965 1.000

beta[3] -1.735 0.008 0.253 -2.227 -1.732 -1.234 941 1.000

Sigma[1,1] 7.482 0.129 1.381 5.067 7.411 10.453 114 1.016

Sigma[1,2] -1.647 0.055 0.558 -2.872 -1.616 -0.671 102 1.018

Sigma[2,1] -1.647 0.055 0.558 -2.872 -1.616 -0.671 102 1.018

Sigma[2,2] 2.198 0.049 0.470 1.364 2.169 3.213 93 1.012

Samples were drawn using NUTS(diag_e) at Sat Apr 23 17:03:40 2016.

One more time the results are similar to the maximum likelihood
estimates.
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Trace Plots for Random Slope Model

traceplot(rsologit, pars=c("theta[1]","theta[2]","theta[3]","beta[1]","beta[2]","beta[3]",

"Sigma[1,1]","Sigma[2,2]","Sigma[1,2]"))
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They all look good, with variances mixing more slowly than the
rest.
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