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Negative Binomial

Count data often exhibit overdispersion relative to a Poisson
model, in the sense that the variance exceeds the mean.

A solution is to add a multiplicative gamma random effect at level
one, with mean one and variance σ2. This results in a negative
binomial model, for which the mean and variance are

E (Y ) = µ and var(Y ) = µ(1 + σ2µ)

The variance here is a quadratic function of the mean.

The model can be extended to multiple levels by adding additional
normal random effects in the log scale.

I often find, however, that this is overkill, as multilevel Poisson
models already allow overdispersion.
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Software Notes: Negative Binomial

Stata can fit random-intercept negative binomial models using
xtnbreg and more general random-coefficient negative binomial
models using menbreg.

In R there is a glmer.nb() function that extends glmer() to
negative binomial models, using adaptive quadrature for
random-intercept models and PQL for models with more than one
random effect.

In addition, rstanarm has a stan glmer.nb() function to fit
these models using Hamiltonian Monte Carlo (HMC).

In the health-reform data a random-intercept NB model gives
results similar to the Poisson model, and a random-slope model
where the reform coefficient varies randomly turns out not to be
identified, resulting in a reform variance of zero (even if you
restrict the fit to women observed both times).
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Excess Zeroes

Another frequent occurrence with count data is to observe an
excess of zeroes compared to the Poisson standard. For example in
the health reform data 30% of the observations have no doctor
visits, whereas a simple Poisson model predicts only 11%.

A negative binomial model often helps improve matters. In the
health reform data, using a negative binomial model predicts 31%
with no visits, a much better fit. The random-slope model
considered in the previous unit also predicts about 30% zero visits.

There are, however, two specialized models that introduce an
additional equation to take care of the excess zeroes: zero-inflated
and hurdle models.

4 / 12 Germán Rodŕıguez Pop 510



Zero-Inflated Poisson

The zero-inflated Poisson model introduced by Lambert (1992)
postulates the existence of a latent class where the outcome is
always zero, and another class where the outcome is drawn from a
Poisson distribution.

The model uses a logit equation to predict membership in the
”always zero” class, and a log-linear equation for the mean of the
Poisson distribution. Both can include covariates, and the model
produces structural and random zeroes.

There is also a zero-inflated negative binomial model, but again I
find that this is overkill, as either zero-inflation or the level-one
random effect can often model the excess zeroes.

The model can be extended in principle to a multilevel setting,
adding random intercepts and slopes.
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Software Notes: Zero-Inflated

Single-level zero-inflated models can be fit in Stata using zip for
Poisson and zinb for negative binomial.

In R I recommend the pscl package, which has a zeroinf()

function, with a dist argument to specify the distribution as the
default ”poisson” or ”negbin”.

There are no packaged procedures in Stata or R for zero-inflated
multilevel models, but these may be programmed in Stan.
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Hurdle Models

An alternative approach uses two separate models:

a logit model to distinguish zero and positive counts, and

a zero-truncated Poisson model to represent the counts
conditional on them exceeding zero.

One can also use a negative binomial distribution for the second
step, but again I find that this is often overkill.

In this model there is only one kind of zero, which makes the
distinction between zero and one or more clearer. Unfortunately
the coefficients no longer have a simple interpretation in terms of
relative effects on the mean, because the mean of the truncated
part is µ/(1 − e−µ) rather than µ. But one can always compute
marginal effects.

Hurdle models can be extended to a multilevel setting by adding
Gaussian random intercepts or slopes.
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Software Notes: Hurdle Models

Fitting single-level hurdle models is easy because you fit separate
logit and zero-truncated Poisson or negative binomial models.

In Stata the commands are logit and tpoisson (which
supersedes ztp) for Poisson or tnbreg (which supersedes ztnb)
for negative binomial.

In R you may use glm() for the Bernoulli part and the VGAM

package, which has a function vglm() with a family argument
that can be ”pospoisson” or ”posnegbinomial” for the truncated
count portion.

Once again there are no packaged procedures in Stata or R for
multilevel versions of hurdle models (or even the truncated count
equation), but they can be programmed in Stan.
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A Random-Intercept Hurdle Model

Here is the model we developed in class to fit a random-intercept
hurdle model to the health reform data. We start with the data
and parameters blocks:

dr_code = ’

data {

int N ; // nobs

int y[N]; // outcome

int K; // number of predictors

row_vector[K] x[N]; // predictors

int M; // number of groups

int g[N]; // mapping

vector[2] Zero; // mean of ri

}

parameters {

real alpha1; // logit equation

vector[K] beta1;

real alpha2; // truncated-poisson equation

vector[K] beta2;

vector[2] u[M]; // random intercepts

vector<lower=0>[2] sigma; // st deviations of ri

corr_matrix[2] Omega; // correlation of ri

}

The model continues in the next slide.
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The Model

Next we write a block to compute the covariance of the random
effects and define the model, including the priors and likelihood

transformed parameters {

cov_matrix[2] V;

V = quad_form_diag(Omega, sigma);

}

model {

alpha1 ~ normal(0,10);

beta1 ~ normal(0,10);

alpha2 ~ normal(0,10);

beta2 ~ normal(0,10);

u ~ multi_normal(Zero, V);

for(n in 1:N) {

(y[n] == 0) ~ bernoulli_logit(alpha1 + u[g[n]][1] + x[n] * beta1);

if(y[n] > 0)

y[n] ~ poisson(exp(alpha2 + u[g[n]][2] + x[n] * beta2))T[1,];

}

}

’

The Bernoulli term contributes to the likelihood p for zeros and
1 − p for positive counts, and the Poisson term contributes a
zero-truncated Poisson density for positive counts.
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Fitting The Model

We read the data from the website, create a list and run the model

library(foreign)

dr <- read.dta("http://data.princeton.edu/pop510/drvisits.dta")

map <- function(id) { f <- table(id); rep(1:nrow(f), f) }

xvars = c("reform","age","educ","married","badh","loginc","summer")

dr_data <- list(N=nrow(dr), K=length(xvars), y = dr$numvisit,

x = dr[,xvars], M = length(unique(dr$id)), g = map(dr$id),

Zero = c(0,0))

library(rstan)

hri <- stan(model_code=dr_code, data=dr_data, chains=1, iter=1000)

The test run takes about one hour. The fixed effects look alright:

print(hri, pars=c("beta1[1]", "beta2[1]","sigma","Omega[1,2]"),probs=c(.025,.975),digits_summary=3)

...

mean se_mean sd 2.5% 97.5% n_eff Rhat

beta1[1] 0.221 0.004 0.116 0.004 0.439 1000 1.010

beta2[1] -0.015 0.001 0.036 -0.086 0.054 1000 0.999

sigma[1] 1.295 0.063 0.170 0.997 1.672 7 1.306

sigma[2] 0.787 0.006 0.032 0.728 0.856 28 1.076

Omega[1,2] -0.555 0.074 0.181 -0.856 -0.199 6 1.377

...

Unfortunately the results for the random effects are terrible,
indicating lack of convergence and an effective sample size for the
correlation of just 6!
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An Alternative Model

I conclude that it is hard to estimate separate propensities for zero
and positive counts. A simpler model postulates a single standard
normal propensity z to visit a doctor. The logit equation has a
term σ1z to affect the probability of one or more visits, and the
Poisson equation has a term σ2z to affect the parameter µ.

This model runs in just about half an hour and yields sensible
results:

> print(hgr, pars=c("beta1[1]", "beta2[1]", "sigma"),probs=c(.025,.975),digits_summary=3)

...

mean se_mean sd 2.5% 97.5% n_eff Rhat

beta1[1] -0.189 0.003 0.102 -0.389 0.012 1000 0.999

beta2[1] -0.018 0.001 0.037 -0.087 0.056 1000 0.999

sigma[1] 0.917 0.010 0.142 0.647 1.198 192 1.013

sigma[2] 0.811 0.002 0.032 0.748 0.874 174 1.007

...

The reform has a large effect on whether women visit a doctor,
and no effect on the number of visits of those who do. It would
probably be worth running two longer chains to confirm the results.

12 / 12 Germán Rodŕıguez Pop 510


