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Website

The course has a website at http://data.princeton.edu/pop510,
where you will find supporting materials including

a course syllabus and bibliography, with useful links to other
resources

a collection of computing logs including

Stata and R logs fitting various linear and generalized linear
multilevel models by maximum likelihood
Computing logs illustrating the use of Bayesian methods in
multilevel analysis, including a random-effects logistic
regression model fitted using WinBUGS and Stan
Some older runs using the classic package MLwiN

Some of my own research on multilevel models is housed at
http://data.princeton.edu/multilevel. Resources include a list
of publications, the simulated data used in a 1995 JRSS-A paper,
and the actual data used in a 2001 JRSS-A paper (and earlier in a
1996 Demography paper)
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Outline

1 Introduction. Variance-component models. Maximum
likelihood and empirical Bayes estimates. Random intercepts.

2 Random slopes. Contextual predictors and cross-level
interactions. Longitudinal data. Growth curve models. The
general linear mixed model.

3 Models for binary data and the generalized linear mixed
model. Likelihood approximations (MQL and PQL).
Quadrature and adaptive quadrature.

4 Bayesian estimation in multilevel models. Markov chain
Monte Carlo (MCMC). Gibbs sampling. The Metropolis
algorithm. Hamiltonian Monte Carlo.

5 Models for categorical data. Ordered logits. Multinomial
logits via SEM and Stan. Poisson models for count data.
Small area estimation.

6 Multilevel survival models. Frailty models. Relationship with
generalized linear mixed models. Interpreting results.
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Software

The course will emphasize applications. Software used will be

Stata, with xtreg, xtlogit and xtpoisson for
random-intercept models and mixed, melogit and
mepoisson for more general multilevel models,

R’s lme4 package with the functions lmer() and glmer(),

WinBUGS for Bayesian inference using the Gibbs sampler and
Stan for Hamiltonian MCMC using NUTS.

Other specialized software in common use includes

MLwinN, developed by Goldstein and collaborators at the
Centre for Multilevel Modelling at Bristol University, and

HLM, developed by Raudenbush and collaborators at the
University of Michigan and distributed by Scientific Software
International (SSI). A free student edition is available
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Bibliography

The closest thing to a course textbook is

Rabe-Hesketh, S., and A. Skrondal. (2012). Multilevel and
Longitudinal Modeling using Stata, 3rd edition. Volume I:
Continuous Responses and Volume II: Categorical Responses,
Counts, and Survival. Stata Press.

The online syllabus cites other sources. Of particular note are

Goldstein, H. (2003). Multilevel Statistical Models, 3rd
edition. London: Edward Arnold. 4th edition is print on
demand. 2nd edition is available free in electronic form

Gelman, A., and J. Hill. (2006). Data Analysis Using
Regression and Multilevel/Hierarchical Models. Cambridge
University Press, an excellent book on statistical modeling
including multilevel models

Bates (2010) has posted chapters from a new book on mixed
models with R.
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Variance components

We start by considering a simple situation: 2-level clustered or
longitudinal data with no covariates. The online example concerns
children nested in schools.

Let Yij denote the outcome for the jth member of the ith group.
(Notation is not consistent, malmus uses the subscripts in the
reverse order. Levels may be counted up or down, and some count
only grouping levels!)

The model is
Yij = µ+ ai + eij

where µ is an overall mean, ai ∼ N(0, σ2
a) is a random effect for

group i and eij ∼ N(0, σ2
e ) is the usual individual error term,

independent of ai .
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Expectation and variance

The expected outcome in this model is just

E (Yij) = µ

The variance of the outcome has two components

var(Yij) = σ2
a + σ2

e

The covariance between two outcomes in the same group is

cov(Yij ,Yik) = σ2
a , j 6= k

The correlation between two observations in the same group is

ρ =
σ2
a

σ2
a + σ2

e

,

and is called the intraclass correlation.
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Estimation of the mean

The OLS estimator of µ is the grand mean, which can be written
as a weighted average of the group means

Ȳ =
∑
i

ni Ȳi/n

with weights proportional to sample sizes. This estimator is
consistent but not fully efficient with unbalanced data.

The ML estimator of µ given the variances σ2
a and σ2

e is also a
weighted average of the group means

µ̂ =
∑
i

wi Ȳi/
∑

wi

but with weights wi inversely proportional to their variances
var(Ȳi ) = σ2

a + σ2
e/ni , for which we plugin estimates.
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Estimation of the variances

There are three approaches to estimating the variance components

A method of moments or anova estimator equates the
between-groups and within-groups sums of squares to their
expected values.

The maximum likelihood (ML) estimator maximizes the
multivariate normal likelihood of the data with respect to all
parameters, implemented in Stata and R.

The restricted maximum likelihood (REML) estimator uses
the likelihood of error contrasts, which allow for the
estimation of the fixed parameters (analogous to using n − p
instead of n in OLS), also implemented in Stata and R.

Each of these approaches leads to a (usually slightly) different
estimator of the mean. I generally prefer ML because it allows
likelihood ratio tests for nested models.
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Scores in language tests

For the language data in the computing logs the MLE of the mean
is

µ̂ = 40.364

compared to a grand mean of 40.935.
The estimated variance components are

σ̂2
a = 4.4082 and σ̂2

e = 8.0352

The intraclass correlation, or correlation between the scores of two
students in the same school, is

ρ̂ =
4.4082

4.4082 + 8.0352
= 0.231

so 23% of the variation in language scores can be attributed to the
schools.

10 / 16 Germán Rodŕıguez Pop 510



Tests of hypotheses

To test hypotheses about µ we used the fact that the ML (or
REML) estimate is asymptotically normal, so we can use a Wald
test. In particular, we can compute a 95% confidence interval

µ̂± 1.96 ŝe(µ̂)

For the school data the 95% interval for the mean is (39.52, 41.20)

To test hypotheses about σ2
a we can use a likelihood ratio test,

fitting models with and without school effects. Because the
hypothesis is on a boundary of the parameter space, however, the
test criterion does not have the usual χ2

1 distribution, but is best
treated as a 50:50 mixture of 0 and χ2

1 by halving the p-value.

For the school data the test criterion is χ̄2
01 = 287.98, so we have

highly significant school effects on language scores.
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Predicting the random effects - ML

Consider “estimating” the school means

E (Yij |ai ) = µ+ ai

Because these involve the random variables ai we prefer to use the
term “prediction”. malmus uses “assigning numbers”.

One approach is to treat the ai as if they were fixed parameters and
everything else as known, and then use ML. The resulting estimate
is the difference between the group mean and the MLE of µ

âML
i = ȳi − µ̂

Thus the ML estimate of the school mean is the sample mean ȳi .
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Predicting the random effects - BLUP

An alternative approach is to minimize the prediction variance
using a best linear unbiased predictor (BLUP), which has the form

âi
BLUP = âi

ML σ2
a

σ2
a + σ2

e/ni

The fraction on the right “shrinks” the ML towards zero by an
amount that depends on the reliability of ȳi .

The corresponding estimator of the school mean is a compromise
between the sample school mean and the overall mean

µ̂i = ȳiwi + µ̂(1− wi )

where wi is the fraction in the top equation. These estimators
have an empirical Bayes interpretation which we discuss next.
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Bayes theorem

Bayes theorem gives us the conditional probability of P|D as a
function of the conditional probability of D|P

Pr(P|D) =
Pr(PD)

Pr(D)
=

Pr(D|P) Pr(P)

Pr(D)

Suppose P are the parameters (which Bayesians view as random)
and D are the data, so Pr(D|P) is the usual likelihood, Pr(P) is
called the prior, and Pr(P|D) is the posterior distribution, so we
can write

posterior ∝ prior× likelihood

Here we ignored Pr(D), which is just a normalizing constant.

Classical statisticians base their inferences on the likelihood, while
Bayesians use the posterior. If the prior is vague or uninformative
the two approaches give similar results.
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Empirical Bayes

In the variance components model we treat ai as a parameter with
prior N(0, σ2

a).

The likelihood is the distribution of the Yij |ai for j = 1, . . . , ni
which are independent N(µ+ ai , σ

2
e ). Maximizing yields âML

i .

The posterior or distribution of ai |yij is proportional to the product
of the prior and likelihood and can be shown to be a normal
distribution, so the mean and mode coincide and give âEBi .

This is not a full Bayesian approach, because instead of assuming
priors for µ, σ2

a and σ2
e we simply plugged estimates. Hence the

name empirical Bayes (EB).

This approach can be used to produce demographic estimates for
small areas, where sample means may be unreliable
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Shrinking towards zero

In the computing logs we show how to fit the variance-components
model and predict the school random effects using ML and EB.
The following graph shows substantial “shrinkage” for three small
schools.
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