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‘ Outline

@ Introduction. Variance-component models. Maximum
likelihood and empirical Bayes estimates. Random intercepts.

@ Random slopes. Contextual predictors and cross-level
interactions. Longitudinal data. Growth curve models. The
general linear mixed model.

© Models for binary data and the generalized linear mixed
model. Likelihood approximations (MQL and PQL).
Quadrature and adaptive quadrature.

© Bayesian estimation in multilevel models. Markov chain
Monte Carlo (MCMC). Gibbs sampling. The Metropolis
algorithm. Hamiltonian Monte Carlo.

© Models for categorical data. Ordered logits. Multinomial
logits via SEM and Stan. Poisson models for count data.
Small area estimation.

@ Multilevel survival models. Frailty models. Relationship with
generalized linear mixed models. Interpreting results.
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Website

The course has a website at
https://data.princeton.edu/pop510, where you will find
supporting materials including
@ a course syllabus and bibliography, with useful links to other
resources
@ a collection of computing logs including
o Stata and R logs fitting various linear and generalized linear
multilevel models by maximum likelihood
e Computing logs illustrating the use of Bayesian methods in
multilevel analysis, including a random-effects logistic
regression model fitted using WinBUGS and Stan
e Some older runs using the classic package MLwiN
Some of my own research on multilevel models is housed at
https:/ /data.princeton.edu/multilevel. Resources include a list
of publications, the simulated data used in a 1995 JRSS-A paper,
and the actual data used in a 2001 JRSS-A paper (and earlier in a
1996 Demography paper)

‘ Software

The course will emphasize applications. Software used will be
@ Stata, with xtreg, xtlogit and xtpoisson for
random-intercept models and mixed, melogit and
mepoisson for more general multilevel models,
@ R's 1me4 package with the functions 1mer () and glmer(),
@ WinBUGS for Bayesian inference using the Gibbs sampler and
Stan for Hamiltonian MCMC using NUTS.
Other specialized software in common use includes

@ MLwinN, developed by Goldstein and collaborators at the
Centre for Multilevel Modelling at Bristol University, and

@ HLM, developed by Raudenbush and collaborators at the
University of Michigan and distributed by Scientific Software
International (SSI). A free student edition is available
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The closest thing to a course textbook is

o Rabe-Hesketh, S., and A. Skrondal. (2012). Multilevel and
Longitudinal Modeling using Stata, 3rd edition. Volume I
Continuous Responses and Volume |l: Categorical Responses,
Counts, and Survival. Stata Press.

The online syllabus cites other sources. Of particular note are

e Goldstein, H. (2003). Multilevel Statistical Models, 3rd
edition. London: Edward Arnold. 4th edition is print on
demand. 2nd edition is available free in electronic form

@ Gelman, A., and J. Hill. (2006). Data Analysis Using
Regression and Multilevel/Hierarchical Models. Cambridge
University Press, an excellent book on statistical modeling
including multilevel models

Bates (2010) has posted chapters from a new book on mixed
models with R.

\ Expectation and variance

The expected outcome in this model is just
E(Yy) =
The variance of the outcome has two components
var(Yy) = 02 4 o2
The covariance between two outcomes in the same group is
j#k

The correlation between two observations in the same group is

cou(Y;, Vi) = 02,

o3
p: 2 27
o5+ 0g

and is called the intraclass correlation.
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Variance components

We start by considering a simple situation: 2-level clustered or
longitudinal data with no covariates. The online example concerns
children nested in schools.

Let Yj; denote the outcome for the jth member of the ith group.
(Notation is not consistent, MALMUS uses the subscripts in the
reverse order. Levels may be counted up or down, and some count
only grouping levels!)

The model is
Yi=p+ai+ej;

where 1 is an overall mean, a; ~ N(0,02) is a random effect for
group i and e ~ N(0,02) is the usual individual error term,
independent of a;.

Estimation of the mean

/16

The OLS estimator of y is the grand mean, which can be written
as a weighted average of the group means

Y = Zn,-\_’,-/n
i

with weights proportional to sample sizes. This estimator is
consistent but not fully efficient with unbalanced data.

The ML estimator of  given the variances o2 and o2 is also a
weighted average of the group means

ﬂ:ZWiVi/ZWi

but with weights w; inversely proportional to their variances
var(Y;) = 02 + 02 /n;, for which we plugin estimates.
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‘ Estimation of the variances

There are three approaches to estimating the variance components

@ A method of moments or anova estimator equates the
between-groups and within-groups sums of squares to their
expected values.

@ The maximum likelihood (ML) estimator maximizes the
multivariate normal likelihood of the data with respect to all
parameters, implemented in Stata and R.

@ The restricted maximum likelihood (REML) estimator uses
the likelihood of error contrasts, which allow for the
estimation of the fixed parameters (analogous to using n — p
instead of n in OLS), also implemented in Stata and R.

Each of these approaches leads to a (usually slightly) different
estimator of the mean. | generally prefer ML because it allows
likelihood ratio tests for nested models.
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\ Tests of hypotheses

To test hypotheses about p we used the fact that the ML (or
REML) estimate is asymptotically normal, so we can use a Wald
test. In particular, we can compute a 95% confidence interval

fi £ 1.96 (1)

For the school data the 95% interval for the mean is (39.52,41.20)

To test hypotheses about 02 we can use a likelihood ratio test,
fitting models with and without school effects. Because the
hypothesis is on a boundary of the parameter space, however, the
test criterion does not have the usual X3 distribution, but is best
treated as a 50:50 mixture of 0 and x? by halving the p-value.

For the school data the test criterion is )Z%l = 287.98, so we have
highly significant school effects on language scores.
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Scores in language tests

10/16

For the language data in the computing logs the MLE of the mean
is
= 40.364

compared to a grand mean of 40.935.
The estimated variance components are

62 =14.408% and 42 = 8.035

The intraclass correlation, or correlation between the scores of two
students in the same school, is

4.4082
p=—>——==0231
P~ 44087 1+ 8.0352
so 23% of the variation in language scores can be attributed to the
schools.
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Predicting the random effects - ML

12/16

Consider “estimating” the school means
E(Yjlai) = p+ aj
Because these involve the random variables a; we prefer to use the

term “prediction”. MALMUS uses “assigning numbers”.

One approach is to treat the a; as if they were fixed parameters and
everything else as known, and then use ML. The resulting estimate
is the difference between the group mean and the MLE of p

~

ML _ =,
dj =Yi—

Thus the ML estimate of the school mean is the sample mean ;.
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Predicting the random effects - BLUP
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‘ Empirical Bayes

15/16

An alternative approach is to minimize the prediction variance
using a best linear unbiased predictor (BLUP), which has the form
2
~BLUP __ ~ ML O3
a; =a" 5
o3+ 02/n;

The fraction on the right “shrinks” the ML towards zero by an
amount that depends on the reliability of y;.

The corresponding estimator of the school mean is a compromise
between the sample school mean and the overall mean

i = yiwi + fi(1 — w;)

where w; is the fraction in the top equation. These estimators
have an empirical Bayes interpretation which we discuss next.

In the variance components model we treat a; as a parameter with
prior N(0,02).

The likelihood is the distribution of the Yj|a; for j=1,...,n;
which are independent N(u + a;,02). Maximizing yields éML.

The posterior or distribution of a;|y;; is proportional to the product
of the prior and likelihood and can be shown to be a normal

distribution, so the mean and mode coincide and give é,EB.

This is not a full Bayesian approach, because instead of assuming
priors for 11, o2 and o2 we simply plugged estimates. Hence the
name empirical Bayes (EB).

This approach can be used to produce demographic estimates for
small areas, where sample means may be unreliable
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Bayes theorem

Bayes theorem gives us the conditional probability of P|D as a
function of the conditional probability of D|P
Pr(PD)

P(PID) = 5 5y =

Pr(D|P) Pr(P)
Pr(D)

Suppose P are the parameters (which Bayesians view as random)
and D are the data, so Pr(D|P) is the usual likelihood, Pr(P) is
called the prior, and Pr(P|D) is the posterior distribution, so we
can write

posterior o prior x likelihood

Here we ignored Pr(D), which is just a normalizing constant.

Classical statisticians base their inferences on the likelihood, while
Bayesians use the posterior. If the prior is vague or uninformative
the two approaches give similar results.
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Shrinking towards zero

In the computing logs we show how to fit the variance-components
model and predict the school random effects using ML and EB.
The following graph shows substantial “shrinkage” for three small
schools.

School effects on language scores

BLUP/EB

-5
L

-20 -10 0 10
MLE

16 /16 German Rodriguez Pop 510




Random intercepts

We now consider models with covariates, starting with the
random-intercept model

Multilevel Models

Yij=a+a+x;8+ej
2. Random Intercept Models Y ' Y /

where Yj; is the outcome for the j-th individual in the i-th group, o
is the constant, and x;; is a vector of predictors with coefficients 3.
German Rodriguez
We have two residuals: a group random effect a; ~ N(0, 02) and
an individual effect e; ~ N(0,02), assumed independent of each
March 28, 2018 other and of the covariates.

Princeton University

Given the random effect a;, the outcome Yjj|a; follows an ordinary
linear model with intercept e + a;, hence the name “random

intercept” .
‘ Parallel lines ‘ Unconditional moments
Here's the model in graphical form In this model the expected value of the outcome is
Random Intercepts ,
" E(Yj) = a+x;p

The variances and covariances of the outcomes are
Yj)=02+02 and Yii, Yik) = 02, # k
var(Yj) = o5 +0z and cov(Yj, Yi) =05, #

The correlation between any two outcomes in a group, or intraclass
correlation is

2
O3

pP="3 2
o5 +og

These results are exactly the same as in the variance-components

In terms of our example, we assume that language scores depend model, the only difference is that we now account for covariates.

on verbal 1Q with a common slope and an intercept that varies
across schools.
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‘ Estimation of the parameters

The OLS estimator of o and f3 ignoring the correlation structure is
consistent but not fully efficient. The associated standard errors
need to be corrected for clustering.

A better approach is to use maximum likelihood (ML). This is
implemented in Stata's xtreg, mle and mixed, mle, as well as
R's 1mer () if you specify REML = FALSE.

Alternatively, one can use restricted maximum likelihood (REML),
as implemented in Stata’'s mixed, reml, or as the default in R's
1mer (), which relies on error contrasts to estimate the variance
components.

Given estimates of 02 and 02, both ML and REML estimate « and
[ using generalized least squares. The two procedures give very
similar estimates if the number of groups is large.

| Multilevel R?

In ordinary linear models we compute R? for model w as the
proportionate reduction in the RSS starting from the null model ¢

. RSS(w)
R =1-Rss)

In a two-level random intercept model we can define R? as

G5(w) + 65(w)

R?=1—- ~ =0.384
63(¢) +62(9)
This statistic can also be calculated by level
A2 ~2
R2—1- 3@ _ o511 and RZ=1- %) o346
? 53(¢) ‘ 53(0)

Unlike linear models R? is not guaranteed to increase when
variables are added!
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Language scores

The computing logs fit this model to the language score data as a
function of verbal IQ centered on the grand mean, so the model is

Yi=a+ai+ B(x—Xx)+ ej.
The fitted equation is
E(Yj;) = 40.609 + 2.488(x — X)
We estimate the variances as
52=3.082° and 42 = 6.498>

The intraclass correlation is

3.0822

—— =0.167
3.0822 + 6.4982 0.167,

p\:

so schools account for 17% of the variation in language scores
after taking into account verbal 1Q.

Predicting random effects

/19

Consider now estimating the group intercepts a + a;, which
involves predicting a; given the other parameters in the model

The ML estimator of a; is obtained by treating everything else as
known and maximizing the likelihood, and turns out to be the
group means of the residuals y; — (& + x,{jﬁ).

The EB estimator maximizes the posterior distribution, obtained as
the product of the likelihood and prior, and can be obtained in
Stata using predict, reffects after mixed (but not after
xtreg), and in R via ranef ().

Comparing the EB and ML estimators you should expect the usual
shinkrage towards zero, as we'll soon see.
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Parallel lines

In the computing logs we fit the model using maximum likelihood
and then obtain the fitted values §;; = & + &; + x};3. The figure
below shows these lines.

Parallel Lines

(=3
@

20
I

Language score
30 40 50
| | |

o

0
Verbal IQ (centered)
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Hypothesis testing

To test hypotheses about [, for example the hypothesis
Hp : B> = 0 for a subset (35, we can use
© Wald tests, constructing the quadratic form
Al ~ ~
W = 35 var(2) " B2, which is asymptotically sz) with d.f.
equal to the number of coefficients in (3.

@ Likelihood ratio tests, where we fit the model with and
without the predictors involved in 85 and take twice the
difference in log-likelihoods, which is asymptotically Xf, with
the same d.f. as above.

With ML both tests are available. With REML we can only use
Wald tests; because the models with and without > use different
error contrasts the restricted likelihoods are not nested!

Tests about the variance components proceed as before.

11/19 German Rodriguez Pop 510

‘ Comparison of ML and EB

We can also compare the empirical Bayes estimates with the
maximum likelihood estimates of the school effects.

ML and EB Estimates of School Effects

The computing logs have a similar plot using estimated intercepts rather than school effects.

10/19

\ Language scores

For the language scores data the estimated slope of 2.49 has a
standard error of 0.07 leading to a Wald z=35.5 (equivalent to
X3 = 1261.4) and a 95% confidence interval of (2.35,2.63).

German Rodriguez Pop 510

The likelihood ratio test compares the log-likelihoods with and
without verbal IQ and gives x? = 1001.5. In multilevel linear
models the LR and Wald tests are #, but asympt equivalent.

The LR test is not available if you use REML, which used to be
the default of mixed. If you try, Stata will warn “REML criterion is
not comparable under different fixed-effects specifications”

Tests for the variance components are as before. In our example
the test for 02 is o1 = 225.92 using ML and Yo1 = 227.30 using
REML. School effects are clearly significant.

12/19 German Rodriguez Pop 510



Between-groups estimation

13/19

Consider the group means, Y, = EJ- Yjj/ni, which follow the model
Yi=a+a+XpB+e

where X; is the average of the covariates and & ~ N(0,02/n;) is
the average error term.

These means are independent and we can estimate « and 3 by
OLS or WLS.

Stata can compute this estimator via the command xtreg, be.
The option wls uses group sizes as weights. (ldeally, of course, we
would like to use weights inversely proportional to the variances of
the group means.)

The between-groups estimator of the slope for the language score
data using WLS is 3.90, much larger than the RE estimate of 2.49.

Germén Rodriguez Pop 510

Between and within-groups together

15/19

The random effects estimator is a weighted average of the between
and within estimators.

It is possible to obtain the within and between-groups estimates
together by fitting a model that includes as predictors the group
means and the differences from the group means:

yi=oa+a +Xps+ (X,'j - X;)Bw + ejj
For the language score data we obtain estimates of
Bg =4.00 and Ay =2.41

The between estimator differs slightly from the WLS estimator
because the weights are not the exactly the same. The within
estimator is identical to the fixed-effects estimator.

A Wald test of equality gives x3 = 25.79 and casts doubt on the
validity of the random effects estimator.

Germén Rodriguez Pop 510

Within-groups estimation

14/19

Consider now the differences between the individual outcomes and
the group means. These follow the model

Yi— Vi= (X — X))+ (e — &)

Note that a drops out, as would any variables which are constant
within groups. (None in our example.)

The estimator based on within-group variation is known as the
fixed effects estimator, and is equivalent to using a dummy
variable for each group. It is available in Stata in xtreg, fe, and
in R using the package plm.

The within-groups estimate of the 1Q slope for the language score
data is 2.41.

German Rodriguez Pop 510

The Hausman specification test

16 /19

Hausman has proposed a specification test for the random effects
model and the assumption that the school effects are exogenous

If the group effects are in fact independent of observed covariates
then the random effects estimator is both consistent and efficient.

If the group effects are correlated with observed covariates, then
the fixed effects estimator is consistent but not efficient.

The Hausman test is based on the quadratic form

(Be — Be)var(Bc) — var(Be)] ™ (Be — Bc)
where | used E for efficient (here the random-effects estimator )
and C for consistent (here the fixed-effects).

For the language score data the Hausman test gives X% = 33.75,
strong evidence of model misspecification.
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‘ Fixed or random?

A random-effects model that fails the Hausman test is often
abandoned in favor of the fixed-effects model. A few caveats:

@ If the test rules out RE it doesn’'t mean FE is the correct
model! Both models assume uncorrelated errors at level 1. It
is only omitted variables at level 2 that are handled by FE.

@ Using FE precludes estimating coefficients for variables that
are constant within a group (for example school SES).
Sometimes these effects are of primary interest.

@ An alternative approach is to include the group means as

predictors for any variable where the between and within
group estimators are significantly different.
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‘ Ignoring clustering

What happens if the random-intercept model is correct but we
ignore the clustering?

@ As noted earlier, the OLS estimate of the fixed effects is
consistent but not fully efficient, so this is not a serious
problem in large samples

@ The estimated standard errors, however, are incorrect. A

common misconception is that they are always too small. As
shown in MALMUS §3.10

o They are too small for between-cluster covariates

o but too large for within-cluster covariates

The solution is to adjust for clustering or, better still, use ML.

Exercise. Verify the last statement using the language scores in the
website, fitting a model with verbal IQ and school SES as examples
of within and between predictors using OLS and ML.
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‘ Centering on group means

Centering the individual predictors on the group means is optional
when the group means are included in the model.
To see this point write

XiBe + (xj — %) Bw = X/ (BB — Bw) + x;Bw

So all that happens if x;; is not centered is that the coefficient of x;
becomes the difference between the between and within
coefficients, which is convenient for testing.

Centering the individual predictors on the group means does not
make a lot of sense if the group means are not included in the
model. Centering on the grand mean is fine in all models that
include a constant.
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Group-specific regressions

We return to our analysis of language scores by verbal 1Q in 131
schools in the Netherlands.

Multilevel Models

A simple approach to the analysis of the data would fit separate

3. Random Coefficients . . .
regressions in each school using the model

German Rodriguez Yii = ai + Bixij + e

where e;; ~ N(0,02), fitted just to school i (so in fact the error

Princeton University
variance could vary across schools).

April 2, 2018
This is easy to do as shown in the computing logs, where we use
the statsby command in Stata and dplyr’s group by () in R, to
run a simple linear regression in each school and gather the
intercepts and slopes.

‘ School regression lines ‘ Random-coefficient models

We can then plot the 131 regression lines An alternative approach is to view the intercept and slope of the
School Regressions regression lines as random:

Yij = (a+aj)+ (B + bj)xj + €

40
I

where « is the average intercept and 3 the average slope, a; is a
school effect on the intercept and b; is a school effect on the slope,
and e;; is the usual error term, with e; ~ N(0, c2).

Language score

20
L

The distribution of the school effects on the intercept and slope is
bivariate normal with mean zero and a general variance-covariance

(5) (o) (2 3 )

that allows for correlation between the intercept and slope effects.

0
Verbal IQ (centered)

Some of these lines are based on relatively small schools and are
thus rather poorly estimated.

3/23 Germén Rodriguez Pop 510 4/23 Germdn Rodriguez Pop 510



5/23 Germén Rodriguez Pop 510

7/

Random Slopes

The figure below shows the model in graphical form

Random Intercepts

-

Interpretation of the intercept (and its variance) depends on the
predictor and is more natural if the predictor is centered.

Intraclass correlation

23

As a result, the intraclass correlation is now a function of the
covariates! With one predictor

2 2
o; + (X,'j + Xik)Uab + XijXikOp,

\/03 + 2xjjoap + X,-JQ-O% + 02 \/03 + 2Xik0ap + X502 + 02

Pijk =

To obtain a single-number summary we can compute the intraclass

correlation for ‘average’ individuals
Jg + 2Xoap + )‘(20123

02 +2%0,p + X202 + 02

p=
where X is the overall mean of the predictor.

If the predictor is centered we obtain a more familiar result

_ o3
p = —_—n
2 2
o; t+og
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Moments and variances

In this model the expected outcome is a linear function of x;;
reflecting the average or pooled regression line

E(Yy) = a+ Bx;j
The variance of the outcome turns out to be
var(Yy) = 02 + 2x0ap + xﬁai + 02

and depends on x;;, so the model is heteroscedastic.

The covariance between two outcomes in the same group, is
2 2 .
cov( Yy, Yik) = 05 + (Xj + Xik)Tab + XijXik0h, j # k

and depends on the two values of the predictor, x;; and xi.
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\ Language scores: model

The computing logs show how to fit a random-slope model to the
data on language scores by verbal IQ in Stata and R. In Stata the
command is

mixed langpost iqvc || schoolnr:

iqve, ///

mle covariance(unstructured)

The two vertical bars separate the fixed and random parts of the
model. We treat the constant and verbal IQ as random at the
school level. It is important to request an unstructured covariance
matrix, otherwise Stata assumes independence.

In R we call the Imer () function with a two-sided formula

lmer(langpost ~ iqvc + (igvc | schoolnr),
data = snijders, REML = FALSE)

Here it is important to request ML as the default in R is REML.

German Rodriguez
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Language scores: estimates

~2 2
0. = 6.44
9/23 Germén Rodriguez Pop 510

The average relationship across schools is
E(Yj) =40.71 + 2.53(x — X)

but we find substantial variation across schools in both the
intercept and slope, with

62=3.056> and &% = 0.458>

There's also a negative correlation between the intercept and slope
(not to be confused with the intraclass correlation)

rap = —0.817
The large negative correlation is not unusual, which is why it is

important to use an unstructured covariance matrix.

Finally, the error variance is estimated as

\ Testing Hypotheses

11/23
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Tests of hypotheses proceed along the same general lines as in
random-intercept models. Here are the highlights:

@ We can test the significance of the average effect of verbal I1Q
using a Wald test. We get z = 31.0, equivalent to x? = 962.0.

@ We can test the significance of the variance of the slope
across schools using a likelihood ratio test. Removing verbal
IQ from the random part saves two parameters. Equivalently,
05 = 0 implies 0,5 = 0, so we test that both are zero. We get
x% = 21 using ML. The test can also be done using REML.

@ Because the above test is on a boundary of the parameter
space it does not have the usual x3 distribution. Stata treats
it as conservative, whereas MALMUS recommend using a
50:50 mixture of x2 and x3. Either way it is highly significant.

@ Removing verbal 1Q from the fixed and random parts of the
model saves 3 parameters. The LR test is conservatively X%-

Pop 510
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Language scores: intraclass correlation

The correlation between the language scores of two students with
average verbal IQ in the same school is

3.062

=_— " _ —0.184
3.062 + 6.442

(%)
which also means that 18.4% of the variance in language scores at
average |Q occurs between schools.

Exercise: calculate the intraclass correlation for different values of
verbal 1Q and plot it.

You should find that the correlation in language scores for children
in the same school who have verbal 1Qs one standard deviation
below the overall mean is 0.279. What happens above the mean?

Estimating intercepts and slopes

The ML estimates of a; and b; can be obtained by calculating the
residuals from the fixed part of the model

yii — (& + Bxyj)

and then fitting school-specific regressions of those residuals on x;;
by OLS.

The EB estimates can be obtained in Stata by using predict bi
ai, reffects after mixed (warning: Stata outputs slopes before
intercepts) and in R by calling ranef ().

Both methods treat the fixed effects as known and substitute
estimates. Typically the EB estimates show shrinkage towards zero
compared to the ML estimates.
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‘ ML and EB estimates

The following figure compares ML and EB estimates of the school
effects on the intercept and slope for the language score data

Intercept Slope
B

30 20 -10 0 10 M 2 0 2 4

We see substantial shrinkage of the intercept effects for a few
small schools, and of the slope effects all around.

Note: The online log has very similar plots comparing empirical Bayes with school-specific regressions
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‘ Level-2 predictors

We now consider introducing a level-2 predictor z;, illustrated by
school SES. As usual | center the predictor on the overall mean,
but will leave that implicit to simplify the notation.

We can introduce school SES as a main effect
Vi = (a+a)+(B+bi)xj+7zi + &
We can also interact school SES with student verbal I1Q
Vi = (a+a;) + (B + bi)xj +vzi + 0xz; + e

The additional term is called a cross-level interaction.

Estimation and testing proceeds as usual, with main effects and
interactions in the fixed part interpreted in the standard way.
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‘ Predicted regression lines

We can also plot the predicted regression lines for all schools

Random Slopes

30 40 50 60
I I I

Language scores

20
I

0
verbal 1Q (centered)

The figure shows that school differences in language scores are
more pronounced at low verbal 1Qs than at the high end.
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\ Level-specific models

There's another way to think about random-coefficient models.
We start with a level-1 model

Y,j =A;+ B,'X,'j-l— €jj

where we predict language scores as a function of verbal IQ with
coefficients that vary by school plus an error term.

We then add a level-2 model for the coefficients

A;=a+a;, and
Bi =+ b

In this case the intercept and slope are viewed as just a constant
plus a residual; in other words we have null models at level 2.

Substituting the second set of equations on the first yields the
random-slope model in slide 4.
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Level-2 models

We now introduce school level SES as a predictor in the level-2
equations, writing

and

Ai = o + o1z + aj,
Bi = Bo + p1zi + b;

where the level-2 residuals a; and b; have a bivariate normal
distribution with mean zero and unstructured covariance matrix.

In this model both the intercept and slope are linear functions of
school SES, but we could let just the intercept depend on SES.

Substituting these equations in the original model gives
Yij = (a0 + a1z + a;) + (Bo + Brzi + bi)x;j + €

and rearranging terms leads back to the model with a cross-level
interaction in slide 15.

Germén Rodriguez Pop 510

Fixed effects

19/23

Here are the ML estimates of the fixed effects

Wald chi2(3) 1059.58

Log likelihood = -7607.8383 Prob > chi2 0.0000
langpost | Coef.  Std. Err. z P>|z| [95% Conf. Intervall
ique | 2.515011 .0789096 31.87 0.000 2.360351 2.669671

sesc | .2410466 .0658997 3.66 0.000 .1118856 .3702077
iqvcXsesc | -.0470625 .0174818 -2.69  0.007 -.0813263  -.0127988
_cons | 40.71326 .2910762 139.87 0.000 40.14276 41.28376

These can be written as the following estimated equation
E( Y,:j|£-),'7 b,) = (40713 +0.241z; + a,-) + (2515 —0.047z; + b,’)X,'j

The expected score for an average student in the average school is 40.71,
it is 1.07 higher if school SES is one sd more, 5.20 higher when verbal 1Q
is one sd more, and 5.84 higher if both conditions obtain. Clearly, verbal
IQ makes more of a difference in schools with low SES.

Note: Verbal IQ has sd=2.07 and school SES has sd=4.43

Germén Rodriguez Pop 510
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Level-specific and reduced forms

The package HLM uses the level-specific formulation of the model,
whereas Stata and R use the reduced form and requires the user to
specify the cross-level interaction terms, but the models are
equivalent and the estimates are exactly the same.

MALMUS notes that users of HLM tend to include more cross-level
interactions than users of Stata because they are built-in.

In the computing logs we fit a model using centered verbal 1Q,
centered school SES, and the interaction term. In Stata

mixed langpost iqvc sesc iqvcXsesc ///
|| schoolnr: iqvc, mle covariance(unstructured)

The specification of the random part is exactly the same as before
we introduced SES, but the fixed part now has the main effect of
SES and its cross-level interaction with verbal Q.

Random effects

Here are the parameters for the random part

Random-effects Parameters | Estimate Std. Err. [95% Conf. Intervall

schoolnr: Unstructured

sd(iqvc) | .3859035
| 2.86771
|

-.8008473

.1208045
2384242
.2294731

.2089373
2.436495
-.9821521

.7127571
3.375242
.1519006

sd(_cons)
corr(iqvc,_cons)

sd(Residual) | 6.443356 .1005435 6.249277 6.643462

LR test vs. linear regression: chi2(3) = 215.75 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

The estimates are similar to the previous model, with substantial
effects of unobserved school characteristics after accounting for
school SES. These effects exceed those of SES.

The intraclass correlation for average students in the average
school is 0.165, and now represents variation in the scores of
average students across schools with the same SES.
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‘ Predicted school lines

We can calculate EB estimates of the random effects as usual and
plot the predicted school-level regressions

Random Coefficient Model with SES

50

40

Language score
30
|

0
Verbal IQ (centered)

The figure looks very similar to the previous analysis, with smaller
school differences at higher verbal 1Qs, all at observed SES.
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‘ Observed and unobserved effects

To compare observed and unobserved school effects we look at
four school scenarios, setting SES one sd above/below the mean
and the correlated random effects one sd above/below the mean.

Predicted Regressions for Four Scenarios
School fixed and random effects one sd above/below mean

Language score
40

30
I

20
I

10

0
Verbal IQ (centered)

Clearly there are large unobserved school effects on language scores
which persist at high verbal 1Qs.

German Rodriguez
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‘ Empirical Bayes estimates

We can also plot the empirical Bayes estimates of the school
effects on the intercept and slope

School Effects on Intercept and Slope

Slope effect
0
‘
[ ]
f
‘et
‘ [ ]
{]

Intercept effect

The prior correlation is —0.801 and the posterior correlation is
—0.971. Schools with higher language scores at average verbal IQ

show smaller differences by verbal 1Q.
Pop 510
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Multilevel Models

4. Longitudinal Data. Growth Curve Models

German Rodriguez

Princeton University

‘ Growth-curve models

We consider a repeated-measurements design where an outcome is
measured at different times on the same individuals, leading to a
growth curve or latent trajectory model.

Examples include weight gain during pregnancy, or depression
scores by age. The term latent trajectory is used because each
individual follows his or her own curve over time.

Growth curve models can be fit using standard two-level models
where the individual acts as the grouping level, particularly if they
are extended to allow for serial correlation in the residuals.

If all individuals are measured at exactly the same ages, growth
curves can also be modelled using structural equation models
(SEM) with exactly the same results for equivalent models.

Germén Rodriguez Pop 510
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Longitudinal data

MALMUS devotes Chapters 5-7 to models for longitudinal data
with emphasis on short panels, and considers four kinds of models

© Random-effect models, where unobserved heterogeneity at the
subject level is represented by random intercepts and slopes

@ Fixed-effect models, where we introduce an additional
parameter per subject to focus on within-subject variation

© Dynamic models, where the response at a given time depends
on previous or lagged responses

@ Marginal models, where focus is on population average effects
and individual differences are of secondary concern

We will focus on random-effect models for longitudinal data. Many
of the issues that arise here are the same as for clustered data, so
we will place emphasis on aspects that are unique to panel data.
We will then close with a couple of words on dynamic models.

Height of boys at ages 11 to 13

We illustrate the main ideas using an example in Goldstein (1995),
see §6.4 and 6.5, starting on page 91, on the heights of boys
measured on nine occasions

Height of 26 boys at ages 11 to 13
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The data are available on the course website as oxboys.dta, with
an analysis using Stata and R at oxboys.html
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‘ A polynomial growth equation

German Rodriguez Pop 510

The basic model used by Goldstein is a fourth-degree polynomial
on age, where the constant, linear and quadratic coefficients are
random at the child level, so

Yie = (Bo + boi) + (B + bui)xie + (B2 + boi)xi + B3xis + Baxiy + eir

where Yj; is height in cm and x;; is age of the i-th child at time t,
centered around 12 years and 3 months.

The child-level residuals (by;, b1, bo;) are assumed to come from a
trivariate normal distribution with mean zero and unstructured
covariance matrix (with three variances and three correlations),
and e;; ~ N(0,02) is the occasion-specific error term.

This is a standard random-coefficient model with the child as the
grouping level, so we already know how to fit it. Let's add some
bells and whistles.
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For those of us who need a refresher, here's a plot of cos(t) for
t € (0,4) in and out of phase

Cosines with amplitude 1 and phases 0 and p

0 314 6.28 12.57
t

To compute the cosine term we simply scale season to the range
(0,27), calculate
sc = cos(7 seas/6)

and add the resulting cosine to the fixed part of the model.

‘ Seasonality

Observations taken throughout the year may exhibit seasonality.
In our dataset the boys were measured in different months of the
year, as shown in a plot of season by occasion

Season
P

T 2 L]

PRI
Occasions

A simple model where a seasonal component has amplitude « and
phase ¢ can be written as

acos(t + ¢) = ag cos(t) — azsin(t)

In this dataset the coefficient of the sine term was very close to
zero and was omitted from the model.
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As this point we are ready to reproduce the results in Table 6.4 in
Goldstein (1995, p.93).

Please refer to the website for the code used to run the model in
Stata and R. The fixed part of the model has linear, quadratic,
cubic and quartic terms on age plus a seasonality term, while the
random part lets the intercept and linear and quadratic age terms
vary randomly across children.

How would you interpret the coefficient of the seasonality
component? How much do you expect a child to grow, on average,
between ages 12.257 and 13.257 What's the correlation between
the heights of the same child at those two ages? Do you think the
model assumptions so far are reasonable?
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Serial correlation

With clustered data a random-intercept model assumes an
exchangeable correlation structure, where any two outcomes have
the same correlation, arising from the fact that they share a;.

With longitudinal data this assumption is suspect because
outcomes that are closer in time are likely to be more highly
correlated than observations taken further apart.

Fortunately, we can extend the model to allow for serially
correlated residuals. In particular, we will assume that

2 —y(t—t:
cov(ejr,, eir,) = a2e (t2~1)

which reduces to the variance og when t; = t» and decays
exponentially to zero as the gap between the times increases.

Both Stata and R allows for this form of residual correlation,
among others.
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\ Fitted grow curves

The figure shows the population average curve and the fitted
growth curves for each child, using ML to estimate the fixed
coefficients and EB for the random coefficients

Fitted Growth Curves

=3
84
-

Height (cm)

120
L

0
Age (centered at 12.25)

The curves reflect substantial variation in growth curves across
children, with large differences in average height.
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The full model

The computing logs show how to fit this fourth degree polynomial
with seasonality, with the level, gradient and curvature by age
varying across children, and residuals that are serially-correlated
within each child.

Here are (somewhat abbreviated) results from Stata

Wald chi2(5) = 502.97

Log likelihood = -305.76024 Random-effects Parameters | Estimate  Std. Err.
id: Unstructured sd(age) | 1.63716 2346991
height | Coef.  Std. Err. sd(age2) | . 7579632 .152763
sd(_cons) | 7.840658 1.088743
age | 6.190767 .3508537 corr(age,age2) | .6869741 .1494221
age2 | 2.16322 .4493732 corr(age,_cons) | .6177878 .1243386
age3 | .386329 .1690328 corr(age2,_cons) | 2489086 .2226974

age4 | -1.548466  .4293597
sc | -.2360017 .0673323 Residual: Exponential rho | .0010001 .0032199
_cons | 148.911 1.539373 sd(e) | .484354 .0478213

We will examine these results largely through graphs.
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Interpreting seasonality

N
N

The coefficient of the cosine term or amplitude is estimated at
—0.236. We can plot the estimated curve —0.236 cos(mwx/6) for
x € (0.84,9.36), the range in the data.

Seasonal Component

Season

The estimates show that boys grow about half a centimeter more
in the summer than in the winter.

German Rodriguez
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Interpreting serial correlation

For residuals with a gap of t the serial correlation is p(t) = e 7.
Stata reports p(1) = 0.001 so v = 6.91. We plot p(t) = e~ 7" for ¢
in (0,1), but label the gap in months:

Serial Correlation for Residuals

t (in months)

The correlation between residuals is 0.178 after 3 months, and falls
to 0.032 after 6 months.
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w
N
N

\ Calculating correlations
The outcomes at ages 11.25 and 11.5 for child i involve the
random effects u; = (a;, bj, ¢i, €11, €2)’.

The variances and covariances of these terms can be extracted
from the output and turn out to be

61.476
7.930, 2.689
V = | 1479, 0.852, 0.575
0, 0, 0, 0.235
0, 0, 0, 0.042, 0.235

The random part of the outcomes for the same child at the given
ages is a linear combination of u; with coefficients

1, -1, 1, 1, 0

€= 1, —0.75, 0.75%2, 0, 1

The variance-covariance of u; is then CVC'.
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Correlation among outcomes

It is important to understand that the serial correlation we have
estimated is just one aspect of the correlation among outcomes in
the same child, the part due to correlated residuals.

A larger part of the correlation comes from the latent trajectory, or
the fact that measurements on a child on different occasions share
the random intercept and slopes for the linear and quadratic terms.

In fact, the correlation between heights measured at ages 11.25
and 11.5, corresponding to the first two occasions, is estimated as
0.996 according to the model. We'll see in a minute how to obtain
this result from first principles.

The observed correlation is also 0.996. The easiest way to verify
this fact is to change the data to wide format.
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Testing variances of random coefficients

There is no question that the curves vary by child. The table below
shows reductions in deviance starting from the population average
model, letting the intercept, slope and curvature be random, and
finally allowing for serial correlation of residuals.

Model log L x> df
Fixed coefficients  -819.79

Random intercept -463.62 71233 1
Random slope -333.26  260.73 2
Random curvature -306.79 5293 3
Serial correlation -305.76 206 1

All tests are on a boundary of the parameter space and thus are
conservative. All are significant except for serial correlation.

You may want to try using REML estimation to see if that makes a
difference in light of the modest sample size.
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Three-level Models

The computing logs have an analysis of three-level panel data with
7230 observations on 1721 students in 60 schools.

School

S

The outcome of interest is math
achievement. The data were

collected over six years from first
to sixth grade, but not all Student

students have six outcomes, so A

the panel is not balanced. vear

The data come from Chapter 4 in the HLM 6 manual and came in
three files, which | merged into a single Stata file called egm.dta.
The analysis may be found in egm.html.

Germén Rodriguez Pop 510

Dynamic models

19/22

Consider a lagged-response model, where the outcomes at previous
times are treated as covariates. For example in an autoregressive
lag-1 or AR-1 model:

Yie = a+ Bxic + vyit—1 + €ir

where e;; ~ N(0,02) with independence across occasions.

This model should only be used if it makes sense to control the
effect of the covariates on previous outcomes, or if the effect of the
lagged response is itself of interest.

With more than two occasions some outcomes appear on both the
right and left-hand sides of the equation. If the process started long
before the first occasion and v < 1 the process will be stationary.

A related approach controls for baseline conditions.
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A Growth Curve

The models considered in the analysis include

© a three-level variance components model, which helps
introduce intra-level correlations,

@ a growth-curve model where math scores increase linearly with
year, with intercept and slopes that vary at the student and
school level, and

© a model where a student’s growth curve depends on ethnicity,
with different intercept and slopes for whites, blacks and
hispanics, and the school average curve depends on the
percent of students with low income

We follow Bryk and Raudenbush developing the models
level-by-level, which helps determine which cross-level interactions
to include.
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Dynamic models with random effects

The previous model is often extended by adding a random effect at
the individual level to account for correlated residuals

Yie = (o +ai) + BXie +7Yie—1 + e

This model poses special challenges because the lagged outcome is
necessarily correlated with the random effect.

Anderson and Hsiao proposed an instrumental variables estimator
using a second-order lag.

Arellano and Bond proposed a generalized method of moments
estimator using additional instruments.

These approaches are both implemented in Stata, but fall beyond
the scope of the course.

German Rodriguez

Pop 510




‘ The Generalized Linear Mixed Model

All the multilevel models considered in this part of the course are
special cases of the GLMM

XB+Z u+ e
nxppx1 nxqqgx1l nx1

y:

nx1l

where X is the design matrix for the fixed effects 3, Z is the design
matrix for the random effects u ~ N,(0, Q) and e ~ N,(0,5?1) is
the error term. Usually € is block-diagonal by level.

In this model the mean and variance are
E(y)=XB and var(y)=2ZRZ' + %
Exercise: Write down the model matrices for a two-level

random-intercept model with 2 observations per group.
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GLMM Estimation

N

N

If the parameters in Q are known, or more generally conditional on
estimates of those parameters, the maximum likelihood estimator
of 8 can be obtained by GLS

ﬁ — (leflx)flxlvfly

Inversion of V takes advantage of its block diagonal structure, so
the calculations are reasonably straightforward.

Using this estimator in the multivariate normal likelihood yields a
profile likelihood that can then be maximized w.r.t. the parameters
in Q. Goldstein showed how this step can also be done using GLS.

Estimation proceeds by alternating the two steps and usually
converges very quickly. Harville showed how the same steps can be
adapted to use REML as proposed by Patterson and Thompson.
The Longford book has details.
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5. Multilevel Logit Models
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\ Fixed effects models

3/

24

We consider a clustered binary outcome following the fixed-effects
model

Yjj ~ B(my), with logit(my) = a; + X3

where «; is a separate parameter for each group.

The usual ML estimator, equivalent to adding a dummy variable
for each group, is inconsistent not just for the group parameters «;
but for 8 as well, in contrast with linear models.

The solution is to condition on group totals, which happen to be
minimal sufficient statistics for the group effects «;.

The resulting likelihood involves only groups with variation in both
the outcome and the predictors. Sometimes losing 90% of the data
is disconcerting, but a necessary price to pay to control for
group-level omitted variables.
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Binary data

We now turn our attention to clustered and longitudinal binary
data. Examples that we will consider include

@ Data on the decision to deliver a birth in a hospital or
elsewhere, with repeated observations on a sample of women.

@ Contraceptive use by women in the Bangladesh DHS. The
data are clustered by district, which may affect both levels
and urban-rural differentials in contraceptive use.

@ Immunization status for Guatemalan children, which are
clustered by mother, which are in turn nested in communities.

For the first example and part of the second we can use fixed or
random effects models.

For three or more levels, and more generally for random coefficient
models, we need a multilevel approach.

We start with a quick reminder of fixed and random-effects models.

Random effects models

24

An alternative model assumes that the group effects are random, so

Yjj ~ B(mj), where logit(m;) = a; + x;;3

where a; ~ N(0,02), is independent of the covariates and of the
implicit error term.

The model can be written in terms of a latent variable following a
linear random-intercept model, where Yj; = 1 if YU* > 0, and

* /
Yi =ai+xiB+ e

where a; ~ N(0,02) as before and e;; has a standard logistic
distribution with mean 0 and variance 72/3 (or N(0,1) for probit).
Just as in logit models we fix the error variance to identify (.

Estimation by ML is implemented in Stata and R, but is not
without some challenges that we now discuss.
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‘ Maximum likelihood estimation

| PQL: Penalized quasi-likelihood A simulation study

7/

24

In multilevel linear models the marginal likelihood is multivariate
normal, so estimation is straightforward.

In multilevel logit models the likelihood is logistic-normal and,
unfortunately, has no closed form. In the random intercept model
the contribution from cluster i is

400 i
L= [ e@ ] mayots - myla)ltvvds
oo e
where 7;;(a) = logit™(a + xi;3) and g(a) is the N(0,02) density.
This integral is intractable.

Not surprisingly, various researchers have proposed approximations.
Regrettably, some of them don't work very well. I'll summarize the
main approaches, see Rodriguez and Goldman (1995, 2001),
henceforth RG1 and RG2, for more details.
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PQL-1. An obvious improvement is to approximate 7 using a
Taylor series expansion about

B =Bo

where By is the current ML estimate of 3 and ug is the EB
estimate of u evaluated at current parameter estimates.

This method has been derived by several authors using different
perspectives. It was named PQL by Breslow and Clayton. It
usually works better than MQL.

and u=ug

PQL-2. Goldstein and Rasbash proposed a second-order PQL
approximation using second derivatives w.r.t. u only, ignoring
second derivatives w.r.t. the fixed effects 3 as well as mixed

derivatives, just as before.

MLwiN implements both forms of PQL.

Germén Rodriguez Pop 510

MLQ: Marginal quasi-likelihood

The multilevel logit model can be written in general form as

y=m+e where m=logit (X8 + Zu)

MQL-1. Goldstein approximates the inverse logit using a first order
Taylor series about 8 = By and u = 0 for a trial estimate 3.

This leads to an approximating multilevel /inear model, which is
used to obtain an improved estimate. The procedure is iterated to
convergence. Longford uses a quadratic approximation to the
log-likelihood. RG1 show that it is equivalent to MQL-1.

MQL-2. A second-order approximation that uses second derivatives
w.r.t. u only, ignoring second derivatives w.r.t. the fixed effects 3
as well as mixed derivatives. Convergence can be an issue.

Both procedures are implemented in MLwiN. Not surprisingly, they
work well for very small u.
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RG1 conducted a simulation study using several scenarios,
involving small and large random effects and designs with small
and large clusters, as found in education and demographic research.

Of particular interest is a set of simulations using the same
structure as a real dataset from Guatemala, which concerned
prenatal care for 2449 births among 1558 women nested in 161
communities. In fact, it was doubts about conventional estimates
obtained with the actual data that motivated the simulation study.

We simulated data using known values of the fixed coefficients and
of the variances of the random effects, and then fitted a three-level
random intercept model using MQL and PQL.

The data were made available through JRSS-A and on my website,
and have been used by several authors, including Nelder, Goldstein
and Rasbash, and Browne and Draper.

German Rodriguez
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‘ Comparison of estimates

\ Adaptive quadrature

11/24

Here are some results from Table 9.1 in Rodriguez (2008), which
has the most complete set of estimates for a simulation using large
random effects.

Estimation Fixed Part () Random Part (o)
method Individual  Family Community Family Community
True value 1.000 1.000 1.000 1.000 1.000
MQL-1 0.738 0.744 0.771 0.100 0.732
MQL-2 0.853 0.859 0.909 0.273 0.763
PQL-1 0.808 0.806 0.831 0.432 0.781
PQL-2 0.933 0.940 0.993 0.732 0.924

MQL-1 underestimates s by 23-26% and os by 27 and 90%!

MQL-2 is more accurate but doesn't always converge. PQL-1 is
better than MQL-1, competitive with MQL-2, and more likely to
converge. PQL-2 is best in the series, with 1-7% bias for the s,
but still underestimates os by 8 and 27% and may not converge.
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An alternative procedure that achieves remarkable accuracy with
fewer points moves the evaluation points to cover the posterior
rather than the prior distribution of the random effects.

Liu and Pierce approximate the posterior using a normal
distribution with the same mode and curvature at the mode. This
has the effect of sampling the integrand in a more relevant range.
The method with just one point is equivalent to a Laplace
approximation or PQL-1.

Rabe-Hesketh and collaborators, building on work by Naylor and
Smith, use the posterior mean and variance of the random effects
instead of the mode and curvature. This leads to somewhat simpler
calculations and was first implemented in their gllamm command.

Pinheiro and Bates see adaptive quadrature as a deterministic

version of importance sampling and use it in non-linear models.
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Gaussian quadrature

10/ 24

In light of these results we turned to ML via numerical integration
of the likelihood function using Gaussian quadrature.

Quadrature rules approximate an integral as a weighted sum over a
grid of points. Gaussian quadrature chooses both the weights and
the evaluation points to minimize error for different integrands.

Gauss-Hermite quadrature can be used with integrals of the form

q
/f(x)e_xzdx = Z wy f(xk)
k=1

The evaluation points are zeroes of the Hermite polynomials and,
together with the weights, can be obtained from tables or code.

This method can be applied to the integral in slide 5 through a

simple change of variables.
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Validating quadrature methods

2/2 Germén Rodriguez

Does it work? We validated ML via quadrature using the simulated
data before using it on actual data, with the following results

Estimation Fixed Part (53) Random Part (o)
method Individual  Family Community Family Community
True value 1.000 1.000 1.000 1.000 1.000
ML-5 0.983 0.988 1.037 0.962 0.981
ML-20 0.983 0.990 1.039 0.973 0.979

Obviously numerical integration works very well indeed, even with
as few as b points.

Our analysis of the Guatemalan data, published in Demography
and used as a case study in RG2, used 20 quadrature points at

each level. | later was able to reproduce the results exactly using
12-point adaptive quadrature. The page maxlik.html has some
vintage runs and comparisons, but these days we use Stata or R.
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‘ Software notes

Stata implements quadrature procedures in two commands:

xtlogit fits random-intercept models. The option intmethod ()
can be ghermite for classic Gauss-Hermite, aghermite for
adaptive G-H using mode and curvature, or mvaghermite for
adaptive G-H using the mean and variance. The default is mv. The
number of points is specified with the intpoints() option and
defaults to 12.

melogit fits random-coefficient models using adaptive
Gauss-Hermite with 7 points per effect as the default. In addition
to the intmethod () and intpoints() options, there's a laplace
option, equivalent to PQL-1, as a faster but less accurate
alternative for exploratory work. The number of integration points
can be varied by level.

Stata 14 can also fit these models using meglm.
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\ Hospital Deliveries

Our first example will use data from Lillard and Panis on the
decision to deliver a birth in a hospital or elsewhere, available in
the datasets section as hospital.dat.

The dataset comprises 501 women with 1060 births. The outcome
hosp is a binary indicator of hospital delivery with mean 0.297.

The predictors of interest are loginc or log-income, distance to
the nearest hospital, and two indicators of the woman's education:
dropout for less than high school and college for college
graduates or higher (only 8.4% of the women).

A simple logit model suggests that all predictors have significant
effects on the probability of hospital delivery, but the assumption
of independence is not adequate with repeated observations on the
same women.
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Software notes (continued)

R's 1me4 package has a function glmer () to fit generalized linear
multilevel models.

For random-intercept models the default is PQL, but it is possible
to specify adaptive quadrature using the mode and curvature by
specifying the number of integration points via the nAGQ argument,
which defaults to one. | strongly recommend that you avoid the
default and specify 7 or preferably 12 points as Stata does.

For random-coefficient models the only option available is PQL,
which unfortunately means that maximum-likelihood results should
be considered approximate and useful only for exploratory work.
(As we will see later, however, these models can be estimated in R
using Bayesian methods.)
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\ A Random-Intercept Model

We therefore introduce a woman level random effect a; and
assume that conditional on that each woman’s outcomes are
independent with probability satisfying the logit model

Pr{Yj = 1]a;} = logit*(a; + x};3)

where xj; represents the predictors for the j-th birth of the i-th
woman and a; ~ N(0, 02) is the woman-specific random effect,
assumed normally distributed.

As noted earlier the likelihood for this model has no closed form
and must be evaluated using numerical integration. The
computing logs show results using 12 quadrature points in Stata
and R. Notably R'’s default choice of PQL does not converge with
these data, but specifying nAGQ=7 works fine.
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Maximum-Likelihood Estimates
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Here are estimates obtained using all the defaults in Stata

Integration method: mvaghermite

Integration pts. =

Wald chi2(4) =
Prob > chi2 =

12

110.06

Log likelihood = -522.65042 0.0000
hosp | Coef. Std. Err. z P>|z| [95% Conf. Intervall

loginc | .5622009 .0727497 7.73 0.000 .4196141 .7047876
distance | -.0765915 .0323473 -2.37 0.018 -.1399911 -.013192
dropout | -1.997753 .2556249 -7.82 0.000 -2.498769 -1.496737
college | 1.03363 .3884851 2.66 0.008 .2722135 1.795047
_cons | -3.36984 .4794505 -7.03 0.000 -4.309546 -2.430134
/1nsig2u | .4372018 .3161192 -.1823805 1.056784
sigma_u | 1.244335 .1966791 .912844 1.696203

rtho

3200274

.0687907

2020988

.4665343

LR test of rho=0: chibar2(01) = 29.61 Prob >= chibar2 = 0.000

We will discuss interpretation of the fixed effects as well as the
standard deviation of the random effects. (We'll leave estimation
of the random effects themselves to the next example.)

\ Plotting SS and PA Effects

German Rodriguez

19/24

The figure below shows the predicted probability of hospital delivery as a
function of log-income for women with high school education, who live at
the average distance from a hospital, and have unobserved characteristics
in percentiles 10, 30, 50, 70 and 90. We also show the predicted
probabilities based on the population average model (dashed line).
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Subject-Specific and Population Average

The fixed effects have a subject-specific interpretation. For
example the coefficient of college means that the odds of
delivering a birth in a hospital are multiplied by 2.81 when a woman
has a college education, compared to what her odds would be with
only a high school education but the same income, distance to the
hospital, and unobserved characteristics as captured by a;.

Contrast this with a population-average effect, which we can
obtain by averaging the effect of college education over all women
with given observed characteristics. For example at the mean
loginc of 5.988 and the mean distance of 3.918, the
probabilities for college 1 and 0 averaged over the distribution of
a using Gauss-Hermite integration are 0.637 and 0.442, leading to
an odds ratio of 2.21.

Population-average (or marginal) coefficients are smaller in
magnitude than subject-specific (or conditional) coefficients.

Standard Deviation of Random Effects

20 /24

A nice way to interpret the standard deviation o, is to write
a; = 0ez; where z; is a standard-normal random effect, so the
model becomes

logit(mj) = 02z + x};3

and o, can be interpreted as a regular logit coefficient for the
standardized random intercept z;

In our data 6, = 1.244. Thus, the odds of hospital delivery for a
woman with unobserved characteristics one standard deviation
above the mean are 3.47 times the odds of an average woman with
the same log-income, distance to a hospital and education.

Similarly, the odds for a woman with unobserved characteristics
one standard deviation below the mean are 71% lower than for the
average woman with the same observed characteristics.

This parameter is also related to the intra-class correlation.
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‘ Latent Intra-Class Correlation

The intraclass correlation is best defined in terms of the latent
variable formulation of the model shown earlier. For a logit model

2
04

P= o2 +72/3

because in a standard logistic distribution 62 = 72/3. (In a probit

model 02 = 1, and in a c-log-log model is it 02 = 72/6.)

For the hospital delivery data the correlation between the
propensity of a woman to deliver any two births in a hospital is

1.2442
p=——-——-— =032
P = 10442 1 72/3
This also means that 32% of the variance in the latent propensity
to deliver a birth in a hospital can be attributed to women.

21/24 Germén Rodriguez Pop 510

Correcting Standard Errors for Clustering

Some researchers faced with repeated binary observations simply
fit logit models and then adjust the standard errors for clustering
using extensions of the Huber-White “sandwich” estimator. This
approach is fine if you keep in mind two caveats:

© You must realize you are fitting a population-average rather
than a subject-specific model and interpret the parameters
accordingly. As we have seen, the effect for a particular
subject differs from the average effect in the population.

@ The estimates obtained using a logit model are not efficient
because they ignore the correlation structure of the data. A
better approach is to use generalized estimating equations
(GEE), which produces efficient population-average estimates
and correct standard errors.
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‘ Manifest Intra-Class Correlation

In a 2003 paper with Elo we proposed looking at the correlation
between actual binary outcomes, which depends on the covariates.
Our method is described in MALMUS §10.9.3 and implemented in a
Stata command called xtrho.

We calculate a two-by-two table of expected outcomes for two
observations in the same group, which we do by integrating out
the random effect at selected values of the linear predictor. At the
median we get

No Yes
No | 0.6153 0.1454 | 0.7607
Yes | 0.1454 0.0938 | 0.2393
0.7607 0.2393 | 1.0000

The marginal probability that a median woman would deliver a
birth in a hospital is 24%, and the joint probability for two births is
9%. The Pearson correlation is 0.20 and Yule's Q is 0.46. The
odds ratio is 2.73.
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\ Comparison of Estimates

The table below compares four estimates of the effect of college
education and its standard error, using logit models, logit with
corrected standard errors, GEE, and random effects

Logit  Cluster GEE Multilevel

B 0.8217 0.8217 0.8078 1.0336
s.e. 0.2611 0.2884 0.2980 0.3885

The first three methods estimate a population-average effect
equivalent to an odds ratio of 2.24 (not unlike our result), and both
correcting for clustering and using GEE inflate the standard error.

The estimated subject-specific effect corresponds to an odds ratio
of 2.81 and is larger than the average effect (it also has a larger
standard error).

The key point is that having clustered data affects not just the
standard errors but the coefficients themselves.

Germén Rodriguez Pop 510




1/15 Germén Rodriguez Pop 510

\ Plotting the Data

Proportion

Multilevel Models

6. Multilevel Logit Models (continued)

German Rodriguez
Princeton University

April 11, 2018

Plotting binary data is harder than continuous data, but still
necessary. A useful tool is to use scatterplot smoothers such as
splines or loess. The figure below shows contraceptive use by age
for rural and urban women grouped by number of children.

Centered age

Contraceptive use is clearly a non-linear function of age, but
analyses use just a linear term. Kudos to Bates!

Germén Rodriguez Pop 510

many

Contraceptive Use in Bangladesh

Our second dataset concerns contraceptive use in Bangladesh from
Hug and Cleland (1990) and makes an appearance in the Stata
manual, Bates's 1me4 book, and other papers.

The data pertain to 1934 women grouped in 60 districts. The
outcome is a binary indicator of current contraceptive use. The
predictors of interest include age and number of children, as well as
an indicator of urban residence. We also have a district identifier.

Most districts have both urban and rural parts. We will entertain
random-intercept models where the level of contraceptive use
varies by district, and random-slope models where the urban-rural
differential varies by district, in both cases net of observed
covariates.

The first issue, however, is how to specify the fixed part of the
model.
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\ Model Selection

Perhaps the first model to fit is a random-intercept model with a
linear term on age, indicators of 1, 2 and 3 or more children, and
an indicator for urban residence, the model used in the Stata
manual and in several previous analyses.

Following Bates we'll introduce a quadratic term on age. This
addition improves the fit by a remarkable 44.12 points in the
chi-squared scale, which is not surprising in light of the graph.

The figure also suggests that there are very small differences
between 1, 2 and 3+ children, so we'll follow Bates and use a single
indicator for any children, losing 0.37 x? points while saving 2 d.f.

A final improvement is to add an interaction between the linear
term on age and the indicator for children. This allows the curve
for mothers to have a different peak and improves the fit by 8.00
chi-squared points at the expense of one d.f.
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The Random-Intercept Model
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Here's the Stata output from the final random-intercept model

Integration method: mvaghermite Integration pts. = 12
Wald chi2(5) = 146.77

Log likelihood = -1182.4584 Prob > chi2 = 0.0000
c_use | Coef. Std. Err. z P>|z| [95% Conf. Intervall

urban | .7134563 .1213548 5.88 0.000 .4756053 .9513074

age | -.0472872 .021841 -2.17 0.030 -.0900949 -.0044795

age2 | -.0057577 .0008414 -6.84 0.000 -.0074068 -.0041086

child | 1.210876 .2075937 5.83 0.000 .8039994 1.617752
ageXchild | .0683467 .0254687 2.68 0.007 .0184289 .1182645
_cons | -1.323606 .2154606 -6.14  0.000 -1.745901  -.9013106
/1nsig2u | -1.48611 .3397138 -2.151937 -.8202836
sigma_u | .4756585 .0807939 .3409673 .6635561

rho | .0643468 .0204529 .0341322 .1180392

LR test of rho=0: chibar2(01) = 44.46 Prob >= chibar2 = 0.000

Results using R's glmr () are very similar. Try your hand at
interpreting these results before peaking at the next slide.

\ Variation in Use Across Districts

There is also evidence of substantial variation in contraceptive use
across districts:

@ The estimated standard deviation of the intercept, 0.476,
means that the odds of using contraception are 60% higher in
a district one standard deviation above the mean than in an
average district, everything else being equal.

@ The intraclass correlation between the latent propensity to use
contraception of two women in the same district is 0.06.
Equivalently, we can say that districts account for only 6% of
the variation in propensity to use contraception net of the
observed covariates.

In case you are curious the manifest correlation at the median,
calculated using xtrho, is equivalent to an odds ratio of 1.23.
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Use by Age, Children and Residence

15

Seems clear that contraceptive use increases with age and then
declines, is higher for women with children than those without,
peaks at a later age for women with children, and is generally

higher in urban areas. These effects are best shown in a graph
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Estimation of the Random Effects

/15

We can identify districts where women are more or less likely to
use contraception by predicting the random effects. There are two
ways to proceed:

@ Calculate maximum likelihood estimates by treating the
estimated linear predictor from the multilevel model as an
offset and then running a separate logit model in each district.
The estimate is not defined when all women in a district have
the same outcome, which happens in three districts.

@ Compute empirical Bayes estimates using the mean or mode
of the posterior distribution of the random effects, which
requires using numerical integration.

Pop 510




‘ Comparison of ML and EB estimates

The graph below compares EB and ML estimates and shows the
usual shrinkage towards zero.

A 0 1

The shrinkage is particularly noticeable in four districts, all with
fewer than 15 women and effects quite far from zero.
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‘ The Random-Slope Model

The next step is to see whether the urban-rural differential in
contraceptive use varies by district, which we'll do by treating the
urban effect as a random slope.

This model is analogous to allowing an interaction between urban
residence and district, but instead of estimating a separate
urban-rural difference for each district, we assume that they are
drawn from a normal distribution. Estimation is possible because
most districts have urban and rural areas; in fact we find only 15
districts with no rural women and 3 with no urban women.
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Predicted Probabilities

Subject-specific probabilities are easily computed from first
principles by setting the observed covariates and the random
effects to selected values. The predicted probabilities for women of
average age with children in urban and rural areas of the average
district are 0.6458 and 0.4718, an odds-ratio of 2.04.

Population-average probabilities can also be computed, although
they require integration over the distribution of the random effect,
which can be done “by hand” or using gllamm. Using 12-point
quadrature we obtain population-average probabilities of 0.6389
and 0.4732, or an odds-ratio of 1.97

As usual the population average effect is smaller than the
subject-specific, but the difference here is modest because the
intra-class correlation is low.
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‘ The Random-Slope Model

Here's the output from Stata using 7 points per effect

Integration method: mvaghermite Integration pts. = 7
Wald chi2(5) = 135.42
Log likelihood = -1176.4767 Prob > chi2 = 0.0000
c_use | Coef.  Std. Err. z P>zl [95% Conf. Intervall
urban | .7906825 .1648731 4.80 0.000 .4675372 1.113828
age | -.0461515  .0219589 -2.10 0.036 -.0891903  -.0031128
agesq | -.0056484 .0008514 -6.63 0.000 -.0073171 -.0039797
child | 1.211711 .2091521 5.79 0.000 .8017802 1.621641
ageXchild | .066423 .0256306 2.59 0.010 .0161879 .116658
_cons | -1.344866 .2244245 -5.99 0.000 -1.78473 -.9050024
district |
var (urban) | .5453645 .2931897 .1901421 1.564212
var(_cons) | .3859845 .1280172 .2014915 .7394059
district
cov(urban, _cons) | -.363198 .1660099 -2.19 0.029 -.6885714 -.0378246

LR test vs. logistic model: chi2(3) = 56.42 Prob > chi2 = 0.0000

The negative covariance should reinforce the importance of
specifying covariance (unstructured).
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 Empirical Bayes Estimates | Empirical Bayes Estimates (continued)

Let us look at estimates of district effects on rural levels and We see a clear negative correlation as noted earlier. Districts where
urban-rural differentials in contraceptive use. We could compute contraceptive use in rural areas is higher than expected after
ML estimates as we did for the random intercept model, but | will considering the age and motherhood status of women, tend to
focus on EB estimates have a smaller urban-rural differential in contraceptive use.
_ * An alternative parametrization estimates separate urban and rural
g levels and omits the constant in the fixed and random parts. This
s o’ %S formulation leads to exactly equivalent estimates of the fixed part
é‘m" °e .. . but the two random effects turn out to be nearly independent.
g il J . . . Details are left as an exercise.
c% o * ":o.. °
g"? % ..:
g °
A ) °
A5 A 5 0 5 1

empirical Bayes means for urban[district]
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‘ Immunization in Guatemala

The final example is our analysis of childhood immunization in
Guatemala. This is a three-level dataset with 2159 children of
1595 mothers who live in 161 communities, analyzed in our
Demography paper and RG2, and used as a detailed illustration of
3-level models in MALMUS §16.2-16.8, pages 873-897.

The sample consists of children age 1-4 who have received at least
one immunization, and the outcome of interest is whether they
have received the full set appropriate for their age. Predictors
include
@ age of child at child level,
@ mother’s ethnicity and education and father's education at the
family level, and
© urban indicator and percent indigenous in 1981 at the
community level.

We will return to this dataset when we compare those results with

Germén Rodriguez Pop 510




1/15 Germén Rodriguez Pop 510

Multilevel Models

7. Bayesian Inference in GLMMs

German Rodriguez

Princeton University

April 16, 2018

Maximum likelihood estimation

ML estimates can be computed by numerical integration of the
likelihood function using Gaussian quadrature, but the procedure is
computationally intensive and can only be used for simple models.

A two-level random-intercept logit or poisson model requires a
one-dimensional integral. Using 12 quadrature points is equivalent
to 12 logit or Poisson likelihoods.

A three-level random intercept model, or a two-level model with a
random intercept and slope, requires a two-dimensional integral.
One evaluation of a logit or Poisson likelihood using 12 quadrature
points per level is equivalent to 144 one-level models.

A three-level logit model with two random coefficients per level
using 12-point quadrature for each, is equivalent to evaluating
almost 21,000 logit or Poisson likelihoods. Numerical integration
doesn’t scale well, and soon succumbs to the “curse of
dimensionality”.

Germén Rodriguez Pop 510
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Generalized linear multilevel models

The logit models we have discussed are special cases of the
generalized linear mixed/multilevel model. We assume that
conditional on a set of multivariate normal random effects

u~ Ng(0,9)

the outcome y has a distribution in the exponential family, which
includes the normal, binomial, Poisson, gamma and others.
We further assume that the conditional expectation satisfies

E(y|u) = f~1(XB + Zu)

where X is the model matrix for the fixed effects 3, Z is the model
matrix for the random effects u, and () is a one-to-one
transformation called the /ink function, which includes the identity,
logit, probit, c-log-log, log, and others.

The marginal likelihood has a closed form for normal models with
identity link, but otherwise involves intractable integrals.

Bayesian estimation

/15

Recent advances in Bayesian estimation avoid the need for
numerical integration by taking repeated samples from the
posterior distribution of the parameters of interest.

To apply this framework we adopt a Bayesian perspective, treating
all parameters as random variables and assigning prior (or
hyperprior) distributions to the fixed parameters 3 and to the
variances Q of the random effects. (We have, of course, already
assigned a prior distribution to the random effects u.)

To obtain Bayesian estimates that are roughly comparable to
maximum likelihood estimates, many analysts use vague or
non-informative priors. Fixed effects are typically assumed to come
from normal distributions with mean zero and very large variances.
Precisions, defined as the reciprocals of variances, are often
sampled from diffuse gamma distributions. Gelman suggests using
a uniform prior on the standard deviation instead.
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‘ A graphical model

Bayesian models are often shown in graphical form as illustrated
below for a 3-level random intercept logit model
/)
©

A
®_|

Commurih;

Here we need priors for the 8s and hyperpriors for the os.

5/15 Germén Rodriguez Pop 510

‘ Markov chains

Let ,Bk,ai, and uy denote a sample, with k = 0 representing
initial values of the fixed and random parameters. The Gibbs
sampler draws

Biy1 from  [Blug,y]
ol from [o%lu and
U1 from [u|ﬂk+17ak+1ay]

This is a Markov chain because each sample depends only on the
previous one. Under reasonably general conditions, the sample
converges in distribution to the joint posterior of interest.

Usually one discards a “burn-in" period long enough to ensure that
the chain has converged to its stationary distribution and uses the
remaining observations to estimate features of the posterior, such
as the mean or a credible interval.

The sample is not i.i.d. The efficiency of the chain is lower when
the draws are highly correlated.
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©

The Gibbs sampler

A popular method for drawing observations from a posterior is the
Gibbs sampler, which draws from a joint distribution by sampling
repeatedly from each of the full conditional distributions.

In our case we need to sample from the joint distribution of the
parameters given the data, which we write as

(3,02, uly]

The Gibbs sampler tells us that we can sample instead from the
three full-conditionals

[Blo u.yl, [0%IB,u,y], and [u]B.o?y]
which in our case further simplify to
[Bluy], [o%u] and [u]8, 02 y]

The fixed effects depend only on the random effects and response,
and the variances depend only on the random effects.

Sampling methods

/15

The actual sampling is done using methods appropriate for each
distribution. I'll mention just a couple of approaches.

Uniform Distribution. An indispensable starting point is a routine
to generate pseudo-random numbers or samples from the uniform
distribution in (0, 1), which both Stata and R do well. runiform
in Stata.

The Inversion Method. A useful general method is based on the
fact that

if X ~ F(x) then F(X)~ U(0,1)

If we can invert the c.d.f. we can then draw samples from it by
calculating F~1(u) where u ~ U(0,1).

For example we could draw normals this way. But Stata and R
have specialized function for many distributions including beta,

binomial, X2, gamma, hypergeometric, normal; Poisson,-and
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‘ Rejection sampling

What if the distribution you need, say f(x), isn't in the list?
There's an ingenious method called rejection (or importance)
sampling which has wide applicability.
All you need is another

density that you know how to

sample from, say g(x), which
“covers” f(x) in the sense

that it has the same domain -
and there is a constant ¢ such

that cg(x) > f(x) for all x.

Rejection Sampling for Beta Density

You then draw a sample x from g(x) and keep it with probability
f/cg(x), which you do by sampling u from U(0,1) and comparing
it to the ratio above. This corrects for the fact that sampling from
g(x) oversamples values of x where g(x) is “taller” than f(x).

| WinBUGS

. Gibbs sampling using adaptive rejection sampling
A has been implemented in a package called BUGS
T (Bayesian Inference Using the Gibbs Sampler). The
BUGS windows version is called WinBUGS.
Two alternatives are OpenBUGS and JAGS (Just Another Gibbs

P

=

5

Sampler), as well as MLwlIN, but we'll focus on WinBUGS. The
program lets you describe your model using a declarative language
to specify the prior distributions and the likelihood, and uses an
expert system to derive the posterior and decide whether to use a
specialized sampling method or ARS. We'll consider two examples:

1. An analysis of immunization in Guatemala based on a
three-level random-intercept model as illustrated in slide 5,
comparing results with other methods.

2. A study of hospital delivery data from Lillard and Panis.

In the process we will address the important issue of convergence
diagnostics.
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‘ Adaptive rejection sampling (ARS)

Gilks proposed a sampling method that extends rejection sampling
to any log-concave distribution, using outer and inner envelopes
based on f(x) and its derivative f'(x) at selected points.

log f(x)

T T T
-2 0 2
X

The method samples from the outer envelope, accepts values
under the inner envelope, and otherwise evaluates f(x) to decide
and then f/(x) to tighten the envelopes.
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Immunization in Guatemala

Here are results from the immunization model described in RG2

TABLE 2. Estimates for Multilevel Model of Complete Immunization
Among Children Receiving Any Immunization

Logit MQL-1 MQL-2 PQL-1 PQL2 PQL-B ML _Gibbs

Fixed Effects

Individual
*Child age 2+ 095 093 111 098 144 180 172 184
Mother age 25+ -0.08 -008 -010 -0.09 -0.16 -0.19 -0.21 -0.26
Birth order 2-3 -008 -009 -011 -010 -0.19 -0.15 -0.26 -0.29
Birth order 4-6 009 013 015 013 017 027 018 021
Birth order 7+ 015 019 023 020 033 039 043 050
Family
Indigenous no Spanish 028 -0.04 -005 -005 -013 -0.06 -0.18 -0.22
Indigenous Spanish 022 001 001 000 -005 003 -008 -0.11
Mother educ primary 025 021 025 022 034 042 043 048
Mother educ sec+ 030 022 027 023 034 046 042 046
*Husband educ primary 029 028 034 030 044 057 054 059
Husband educ sec+ 021 025 031 027 041 047 051 055
Husband educ missing 003 0.02 002 002 001 007 -001 000
Mother ever worked 025 019 024 020 031 037 039 042
Community
*Rural -050 -047 -057 -050 -0.73 -093 -0.89 -0.96

*Prop. Indigenous 1981 -0.78 -064 -078 -067 -095 -1.21 -115 -1.22
Random Effects
Standard Deviations (o)

Family - 063 072 073 175 269 232 260

Community - 053 055 056 084 106 102 113
Intraclass Correlations (p)

Family - 017 020 020 053 072 066 071

Community - 007 007 007 010 010 011 011

Note: asterisks indicate fixed effects significant at the five percent level according to the maximum likelihood analysis. The
reference categories are child age one, mother's age < 25, birth order one, ladino, mother no education, husband no education,
mother never worked and urban residence.
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‘ Trace plots and posteriors

Here is what the actual output looks like for selected parameters.

The first three parameters are |WMWW |

child, mother and community
fixed effects, the last two are
standard deviations of mother

and community random ef- I .
fects. 'Mm%‘ l ‘
On the left we see trace plots, S

i el shod sk i ot |

ily o shows slow mixing. On
the right we see kernel esti-
mates of the posterior densi-
ties.
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\ Convergence diagnostics
There's a specialized package for convergence diagnostics and
output analysis for Gibbs output called CODA. The ecology is
richer in the R world than in Stata, but see Thompson, Palmer and
Moreno (2006) in the Stata Journal 6:530-549, available at
http://www.stata-journal.com/sjpdf.html?articlenum=st0115

The website illustrates the use of winBUGS to estimate a logit
model for the hospital delivery data. This model is simple enough
that it can be fitted by maximum likelihood using Stata or R, but
it is instructive to try the Bayesian approach, which gives similar
results if we use non-informative priors.

The pages at hospBUGS.html and hospBUGS2.html have
step-by-step instructions for running the model using the GUI with
a compound document, and using the scripting facility introduced
with version 1.4. To get winBUGS visit http://www.mrc-bsu.cam.
ac.uk/software/bugs/the-bugs-project-winbugs/.
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Convergence diagnostics
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Some Bayesians recommend using several chains and others prefer
one long chain. A good compromise is to run three chains with
different starting points.

For the Guatemala data we ran burn-ins of 200 followed by 5,000
draws. A battery of tests showed that this was adequate, based on

Geweke (1992)’s test of convergence, which divides the chain into
two sections (such as first 10% and last 50%) and compares means

Raftery and Lewis (1992, 1996) gibbsit software, to determine
the sample size needed to estimate each posterior c.d.f. at 95%
credible limits within 0.015 with probability 0.95

Roberts (1996) estimate of efficiency, to ensure that we had the
equivalent of at least 100 i.i.d. observations in the worst case,
where efficiency was only 2%.
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Multilevel Models

8. Bayesian Inference via Metropolis-Hastings

German Rodriguez

Princeton University

Metropolis Hastings

12

For a target f we need a density g(y|x) that is easy to sample
from (for example multivariate normal) and such that the ratio
f(y)/q(y|x) is known up to a constant independent of x.

If g(.|x) has enough variation to cover the support of f we can
build a chain that has stationary distribution f using a surprisingly
simple algorithm:

Given x(9),
@ Generate Y; ~ g(y|x(9), and
Q Take x(t+1) = Y, with probability p(x(?), Y;) and x(t)

otherwise, where

f

f(x) q(y[x)
is the acceptance probability. Note that sometimes we keep the old
value! The kernel q is called the proposal and affects the

acceptance rate and efficiency of the chain.

p(x,y) =

Germén Rodriguez Pop 510
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Markov Chain Monte Carlo

The Gibbs sampler is very popular but by no means the only
MCMC method. An alternative is the Metropolis-Hastings
algorithm, which can sample from a multivariate distribution in one
step. Robert and Casella (2010) have a nice introduction to Monte
Carlo Methods with R.

The basic idea given a target density f is to build a Markov Chain
that has stationary distribution . You'd think this is hard, but in
fact there are methods that work in principle for any density. One
such method is Metropolis-Hastings. (Another is Gibbs sampling.)

Stata now has Bayesian methods using Metropolis-Hastings, and R
has an interface to Stan, which implements a variant of the
algorithm using Hamiltonian dynamics, and includes a package
that can fit many standard models by calling Stan to do the work.

We describe some basic features of the algorithm before turning to
the implementations.

Independent and Random Walk Variants

12

The basic algorithm allows the draw to depend on the current
state of the chain, but this is not necessary and the proposal can
be g(y|x) = q(y). This leads to a simplified algorithm called
independent MH, which is simple but hard to tune well.

One way to take into account the previous value is to simulate

Y, = X(Y) 4 ¢, where € is a random perturbation with distribution
g independent of X(*), so the proposal density g(y|x) has the form
g(y — x), leading to the random walk MH

Given x(9),
@ Generate Y; ~ g(y — x(t), and
@ Take x(t+1) = Y, with probability min{f(Y;)/f(x(?)),1} and
x(t) otherwise

In fact this was the original version of the algorithm. Sometimes,
howevever, random walks are slow to converge, and efficiency is
highly dependent on the choice of g.
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Hybrid or Hamiltonian Monte Carlo (HMC)

12

The latest development in MCMC is a hybrid algorithm that uses
Hamiltonian dynamics borrowed from physics to improve on
traditional Metropolis-Hastings by producing proposals far from
the current values yet with high probability of acceptance.

The Hamiltonian of a system describes the movement of a particle
given its position and momentum in space and leads to differential
equations for its trajectory over time.

In statistical MCMC we treat minus the log of the posterior density
as the position, and sample the momentum along each dimension
from independent Gaussian distributions.

The trajectory is simulated in discrete time using L steps of size €
using a method known as leapfrog to reach a proposed state,
which is then accepted or rejected using H-M with appropriate
acceptance probability. See Neal (2011) for an excellent discussion.

The NUTS variant of the HMC algorithm has been implemented in
the program Stan, a “probabilistic programming language” from
Gelman’s group, named after Stanislaw Ulam, inventor of Monte
Carlo. The language has a website at http://mc-stan.org.

Stan is a high-level language not unlike BUGS that can be used to
specify a model, but then generates a C++ program that is
compiled and run to generate the samples efficiently.

There are interfaces to run Stan from R and Stata (as well as
Python, Julia, Matlab, Mathematica and Scala) which help a bit,
but still require learning the modeling language.

There is also an R package called RStanArm that makes using Stan
extremely easy for standard models because you can specify them
using R syntax!

Germén Rodriguez Pop 510
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The No-U-Turn Sampler (NUTS)

One difficulty with HMC is that it needs the gradient of the log
posterior in order to compute momentum. But this can be handled
using automatic differentiation.

Another difficulty is the need to fine tune the two HMC parameters
L and ¢, which is essential to obtain an efficient algorithm.

Hoffman and Gelman (2014) proposed an HMC variant known as
NUTS that avoids the need to specify the number of steps L while
ensuring that the trajectory is followed long enough, and can
auto-tune € using a clever scheme to achieve the same efficiency as
HMC, and sometimes even better.

The end result is an algorithm that seems very well suited for
automatic Bayesian inference without the need for costly tuning
steps or substantial expertise.

The Hospital Data

My first experience with Stan was running the Lillard and Panis
hospital delivery data. Here's the code, saved in R as a string:

data {
int N; // number of obs (pregnancies)
int M; // number of groups (women)
int K; // number of predictors

int y[N]l; // outcome

row_vector[K] x[N]; // predictors

int g[N]; // map obs to groups (pregnancies to women)
}
parameters {

real alpha;

real a[M];

vector [K] beta;

real<lower=0,upper=10> sigma;

}
model {
alpha ~ normal(0,100);
a ~ normal(0,sigma);
beta ~ normal(0,100);
for(n in 1:N) {
y[n] ~ bernoulli(inv_logit( alpha + alg[nl] + x[nl*beta));
}
}

The variable names are not very descriptive because | wanted to
write code | could use for other random-intercept logit models.
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‘ Running from R

To run the model | first copied the data from hosp to a list with
the same names as the Stan code

hosp_data <- list(N=nrow(hosp),M=501,K=4,y=hospl[,1],x=hosp[,2:5],g=hosp[,6])

| then ran the model specifying 2 chains of 2000 samples each
hfit <- stan(model_code=hosp_code, model_name="hospitals", data=hosp_data, iter=2000, chains=2)

TRANSLATING MODEL ’hospitals’ FROM Stan CODE TO C++ CODE NOW.
COMPILING THE C++ CODE FOR MODEL ’hospitals’ NOW.

SAMPLING FOR MODEL ’hospitals’ NOW (CHAIN 1).

Iteration: 2000 / 2000 [100%] (Sampling)

Elapsed Time: 58.065 seconds (Warm-up)
24.373 seconds (Sampling)
82.438 seconds (Total)

SAMPLING FOR MODEL ’hospitals’ NOW (CHAIN 2).

Iteration: 2000 / 2000 [100%] (Sampling)

Elapsed Time: 58.074 seconds (Warm-up)
23.186 seconds (Sampling)
81.26 seconds (Total)

The computing log at hospStan.html has more details about this
run.
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Stan Meets Applied Regression Modeling

The R package RStanArm makes it very easy to run the types of
models in Gelman and Hill's ARM book by providing an R
interface almost identical to glm and glmer to specify the model,
which is then run in Stan using pre-compiled code.

Here's the R call for maximum likelihood:

glmer (hosp ~ loginc + distance + dropout + college + (1 | mother),
data = hosp, family = binomial, nAGQ = 12)

And here's the equivalent R call for Bayesian estimation:
stan_glmer (hosp ~ loginc + distance + dropout + college + (1 | mother),
data = hosp, family = binomial)
This will run four chains with burn-ins and samples of 1,000
observations each.

| recommend using this interface for standard models and then
learning the more powerful Stan language to fit a much wider
variety of realistically complex models.
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‘ Stan and hospital deliveries

Here are the Stan trace Taceof apha
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Metropolis-Hastings in Stata

Stata now has a bayeshm command that can fit a variety of
models using a random walk Metropolis-Hastings algorithm. The
developers note that the algorithm is not optimal for Bayesian
multilevel models, but can be used in models that do not have too
many random effects. Here's a command that will run a
random-intercept model with the hospital data

bayesmh hospital loginc distance dropout college ibn.group ///
, likelihood(logit) ///
prior({hospital:i.group}, normal(0,{var})) ///
prior ({hospital:loginc distance dropout college _cons}, normal(0,1000)) ///
prior({var}, igamma(0.001,0.001)) ///
block({hospital:i.group}, reffects) ///
block({hospital:loginc distance dropout college _cons}) ///
block({var})

The syntax is similar to other Stata commands, treating the
grouping variable as a factor without a reference cell. Sampling all
parameters together is inefficient and we work in blocks, separating
the fixed, random and variance parameters. See the computing log
at hospStata.html for details.
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Poisson Models

This unit concerns models for count data. We assume that
conditional on unobserved random effects the outcomes have a

Multilevel Models Poisson distribution.

9. Models for Count and Survival Data For example in a two-level random intercept model we write

Yijlai ~ P(u) where log pj = (o + a;) + X3

German Rodriguez

We will assume that a;; ~ N(0, 02) as we have done for other

Princeton University models. This choice generalizes to more general random-coefficient
. models but requires quadrature. Stata uses adaptive quadrature in
April 23, 2018 xtpoisson and mepoisson and R's glmer () uses quadrature for

one random effect and PQL otherwise.

An alternative with Poisson models is to use a gamma-distributed
multiplicative random effect, which can be integrated analytically,
but doesn't generalize to correlated random effects. Stata's
xtpoisson implements gamma as an option.

‘ A Random-Intercept Poisson Model ‘ Fitting the Random-Intercept Model
Our first application is to small area estimation using data on lip In this model the conditional distribution of the count is Poisson
cancer from Scotland. The data consist of the number of cases with mean proportional to the expected number of cases
observed in each of 56 counties in 1975-80, and are available at Yila; ~ P(u;) with logpu; = atai+log(e) and aj ~ N(0702)

http://www.stata-press.com/data/mlmus3/lips.dta.
MALMUS fits the model using gllammm (page 724). Using Stata's

mepoisson we get the same results using the comand
mepoisson o, offset(lne) || county:

Note that the offset has to be specified as an option in the fixed

part of the model. The model can also be fit using R as shown in

the computing logs.

We also have information on the expected number of cases based
on age-specific lip cancer rates for the whole of Scotland and the
age distribution in each county. The ratio of observed to expected
counts, usually times 100, is called the Standardized Mortality
Ratio (SMR). For example a value of 193.2 denotes almost twice

as many cases as expected.
Using mean-variance adaptive Gauss-Hermite quadrature with 12

A limitation of crude SI\/IR.? is tha_t estimates for coynties with points we get & = 0.0803 and 2 = 0.5847.

small populations are very imprecise. To address this problem we

will use Empirical Bayes (EB) estimates based on a The average SMR in this model is 145, obtained by noting that
random-intercept Poisson model. By adding a random effect at E(Yi/e) = exp(a+a;) and E(exp(a;)) = exp(02/2)

level one we are effectively modeling over-dispersion.

There is, however, substantial variation across . counties.
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‘ Prediction of SMRs by County
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‘ Health-Care Reform in Germany

7/

12

We now consider predicting the SMR in each county using EB
posterior means or modes. Stata’s mepoisson uses means, but has
an option for modes; gllamm uses means, and R uses modes.

We first predict the random effects using predict a, reffects
or ranef () to obtain &; for each county, and then add the
constant but leave out the offset, computing the predicted SMR as
100 exp{& + &;}.

The figure on the right
shows the EB estimates
plotted against the crude
SMRs and exhibits the
usual shrinkage towards
the overall mean, see
MALMUS figure 13.3.

600

400

Empirical Bayes SMR

200

MALMUS examines the extent to which the health-care reform in
Germany reduced the number of doctor visits, using panel data for
women working full time before and after the reform.

Here is a comparison of effect estimates from three models, all including
controls for age, education, married, bad-health, log-income and summer

Model Poisson  R-Intercept R-Slope
Reform  0.8690  0.9547 0.9023
0, - 0.9051 0.9541
op - - 0.9303

The random-intercept model shows substantial unobserved heterogeneity
in doctor visits among women with the same observed attributes; a one
std dev increase in “frailty” results in 2.5 times as many visits.

The random-slope model allows the effect of the reform to vary across
women. The effect for the average woman is now a 10% reduction, but
varies substantially across women. The correlation between intercept and
slope is —0.491.
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A Choropleth Map

. I 20010 700 (4
The map on the right — N, q
shows the counties of I s0t0120
Scotland with shading % s

representing the EB
estimate of the SMR,
reproducing MALMUS
Figure 13.2.

The computing log shows
how to reproduce this
graph using Stata code
available from Stata press
or our own R code. The
incidence of lip cancer is
higher in coastal places,
particularly in the north.

Infant and Child Mortality in Kenya

An important application of Poisson models is to multilevel survival

analysis via the connection with piecewise exponential survival.

| illustrate this approach with an analysis of infant and child
mortality using the Kenya DHS, with an abridged version in

“Multilevel Models in Demography” and full details in my chapter

of the Handbook of Multilevel Analysis.

Let A\ji(t) denote the hazard at age t for the i-th child of the j-th

mother in the k-th community. We consider a three-level model
A(t]xijks ajk, ak) = Ao(t) exp{xfy 3 + ajx + ax}

where \o(t) is the baseline hazard, j is a vector of fixed

parameters representing effects of observed covariates, and
ajx ~ N(0,03) and ax ~ N(0,03) are random effects representing
unobserved family and community frailty.

=Y
—
o
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Estimation Using Poisson Regression

We assume the hazard is constant in intervals with cutpoints 74.

After some exploratory work | chose cutpoints 0,1,6,12,24 and 60
months. | then split each observation into one episode per interval
visited, and count events and exposure, obtaining 48,094 episodes.

Predictors include one variable at the community level (urban or
rural), one at the mother level (years of education) and five at the
level of the child, all well-known risk factors (gender, cohort, age of
mother, birth order, and length of the previous birth interval). Ill
show how these are represented when | display the coefficients.

To fit the piecewise exponential model we treat the death indicator
as Poisson with the log of exposure time as an offset. Estimation
using mean-variance adaptive Gaussian quadrature is implemented
in Stata's mepoisson. (Unfortunately R's glmer in the 1me4
package uses PQL for three-level models. Fortunately there is a
good interface to Stan for Bayesian estimation.)
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\ Hazard Ratios

The fixed coefficients can be interpreted in the usual fashion.
Children born after 1993 have 19% higher risk that those born
earlier, after adjusting for all other factors.

For variables represented using a quadratic or a spline a graph is
always helpful:

0.6
0.8
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0.6
0.4

-0.4
04 03
0.2 0.2

00 0.1

-1.0
0.0

15 20 25 30 35 40 45
Mother's Age

The most remarkable feature of the results, however, is the extent
to which we have unobserved heterogeneity at the family and
community level.

20 30_40 50 60 70
Birth Interval

5 10 15
Mother's Education
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Parameter Estimates

Variable Term  Coefficient ~ Standard Error  Hazard Ratio
Fixed Coefficients

Constant 1 -4.588 0.118 -
Age 1-5 -1.642 0.089 0.194
6-11 -1.998 0.097 0.136

12-23 -2.822 0.106 0.059

24-59 -3.362 0.109 0.026

Sex male 0.087 0.068 1.091
Cohort 1993+ 0.173 0.069 1.189
Mother's a—25 -0.047 0.011 0.954
age (a—25)? 0.003 0.001 1.003
Birth o—3 0.043 0.039 1.044
order (o —3)? 0.004 0.005 1.004
Interval (30 — i)+ 0.036 0.006 1.037
Mother's e—7 -0.068 0.015 0.934
education (e —7)? -0.007 0.003 0.993
Residence urban 0.040 0.142 1.041

Variance Parameters

Family o2 0.613 0.086 1.846
Community o3 0.680 0.055 1.973
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Predicted Probabilities

A nice way to present results is to compute conditional and
marginal probabilities of death by age one and five.

Here are estimated conditional (or subject-specific) probabilities for
quartiles 1 and 3 of observed and unobserved risk:

Com Fam Obs

woo) | |

@ | |

o ]

6 E) 100 150 2bo

The marginal (or population-average) probabilities can be obtained

using Gauss-Hermite quadrature.

German Rodriguez
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Multilevel Models

10. Models for Overdispersed Count Data

German Rodriguez

Princeton University

Software Notes: Negative Binomial

12

Stata can fit random-intercept negative binomial models using
xtnbreg and more general random-coefficient negative binomial
models using menbreg.

In R there is a glmer.nb() function that extends glmer () to
negative binomial models, using adaptive quadrature for
random-intercept models and PQL for models with more than one
random effect.

In addition, rstanarm has a stan_glmer.nb() function to fit
these models using Hamiltonian Monte Carlo (HMC).

In the health-reform data a random-intercept NB model gives
results similar to the Poisson model, and a random-slope model
where the reform coefficient varies randomly turns out not to be
identified, resulting in a reform variance of zero (even if you
restrict the fit to women observed both times).
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Negative Binomial

Count data often exhibit overdispersion relative to a Poisson
model, in the sense that the variance exceeds the mean.

A solution is to add a multiplicative gamma random effect at level
one, with mean one and variance o2. This results in a negative
binomial model, for which the mean and variance are

E(Y)=p and var(Y) = pu(l+o%u)
The variance here is a quadratic function of the mean.

The model can be extended to multiple levels by adding additional
normal random effects in the log scale.

| often find, however, that this is overkill, as multilevel Poisson
models already allow overdispersion.

Excess Zeroes

/12

Another frequent occurrence with count data is to observe an
excess of zeroes compared to the Poisson standard. For example in
the health reform data 30% of the observations have no doctor
visits, whereas a simple Poisson model predicts only 11%.

A negative binomial model often helps improve matters. In the
health reform data, using a negative binomial model predicts 31%
with no visits, a much better fit. The random-slope model
considered in the previous unit also predicts about 30% zero visits.

There are, however, two specialized models that introduce an
additional equation to take care of the excess zeroes: zero-inflated
and hurdle models.

Pop 510




Zero-Inflated Poisson

The zero-inflated Poisson model introduced by Lambert (1992)
postulates the existence of a latent class where the outcome is
always zero, and another class where the outcome is drawn from a
Poisson distribution.

The model uses a logit equation to predict membership in the
"always zero" class, and a log-linear equation for the mean of the
Poisson distribution. Both can include covariates, and the model
produces structural and random zeroes.

There is also a zero-inflated negative binomial model, but again |
find that this is overkill, as either zero-inflation or the level-one
random effect can often model the excess zeroes.

The model can be extended in principle to a multilevel setting,
adding random intercepts and slopes.
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\ Hurdle Models

An alternative approach uses two separate models:
@ a logit model to distinguish zero and positive counts, and

@ a zero-truncated Poisson model to represent the counts
conditional on them exceeding zero.

One can also use a negative binomial distribution for the second
step, but again | find that this is often overkill.

In this model there is only one kind of zero, which makes the
distinction between zero and one or more clearer. Unfortunately
the coefficients no longer have a simple interpretation in terms of
relative effects on the mean, because the mean of the truncated
part is /(1 — e™#) rather than p. But one can always compute
marginal effects.

Hurdle models can be extended to a multilevel setting by adding
Gaussian random intercepts or slopes.
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Software Notes: Zero-Inflated

Single-level zero-inflated models can be fit in Stata using zip for
Poisson and zinb for negative binomial.

In R | recommend the pscl package, which has a zeroinf ()
function, with a dist argument to specify the distribution as the
default " poisson” or "negbin”.

There are no packaged procedures in Stata or R for zero-inflated
multilevel models, but these may be programmed in Stan.

Software Notes: Hurdle Models

Fitting single-level hurdle models is easy because you fit separate
logit and zero-truncated Poisson or negative binomial models.

In Stata the commands are logit and tpoisson (which
supersedes ztp) for Poisson or tnbreg (which supersedes ztnb)
for negative binomial.

In R you may use glm() for the Bernoulli part and the VGAM
package, which has a function vglm() with a family argument
that can be "pospoisson” or " posnegbinomial” for the truncated
count portion.

Once again there are no packaged procedures in Stata or R for
multilevel versions of hurdle models (or even the truncated count
equation), but they can be programmed in Stan.
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A Random-Intercept Hurdle Model
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Here is the model we developed in class to fit a random-intercept
hurdle model to the health reform data. We start with the data
and parameters blocks:

dr_code =’
data {
int N ; // nobs
int y[N]; // outcome
int K; // number of predictors
row_vector (K] x[N]; // predictors
int M; // number of groups
int g[N]; // mapping
vector[2] Zero; // mean of ri

parameters {
real alphalj;
vector [K] betal;
real alpha2;
vector [K] beta2;
vector[2] u[M];
vector<lower=0>[2] sigma;
corr_matrix[2] Omega;

// logit equation
// truncated-poisson equation
// random intercepts

// st deviations of ri
// correlation of ri

The model continues in the next slide.
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Next we write a block to compute the covariance of the random
effects and define the model, including the priors and likelihood

transformed parameters {
cov_matrix[2] V;
V = quad_form_diag(Omega, sigma);
}
model {
alphal ~ normal(0,10);

betal ~ normal(0,10);
alpha2 ~ normal(0,10);
beta2 ~ normal(0,10);

u ~ multi_normal(Zero, Omega);
for(n in 1:N) {
(y[n] == 0) ~ bernoulli_logit(alphal + ulg[n]]1[1] + x[n] * betal);
if(y[n] > 0)
y[n] ~ poisson(exp(alpha2 + ulglnl][2] + x[n] * beta2))T[1,];

The Bernoulli term contributes to the likelihood p for zeros and
1 — p for positive counts, and the Poisson term contributes a
zero-truncated Poisson density for positive counts.

| Fitting The Model - An Alternative Model

11/12

We read the data from the website, create a list and run the model

library(foreign)
dr <- read.dta("http://data.princeton.edu/pop510/drvisits.dta")
map <- function(id) { f <- table(id); rep(l:nrow(f), f) }
xvars = c("reform","age","educ","married","badh","loginc","summer")
dr_data <- list(N=nrow(dr), K=length(xvars), y = dr$numvisit,
x = dr[,xvars], M = length(unique(dr$id)), g = map(dr$id),
Zero = c(0,0))
library(rstan)
hri <- stan(model_code=dr_code, data=dr_data, chains=1, iter=1000)

The test run takes about one hour. The fixed effects look alright:

print(hri, pars=c("betal[1]", "beta2[1]","sigma","Omega[1,2]"),probs=c(.025,.975),digits_summary=3)

mean se_mean sd  2.5% 97.5) n_eff Rhat

beta1[1] 0.221 0.004 0.116 0.004 0.439 1000 1.010
beta2[1] -0.015 0.001 0.036 -0.086 0.054 1000 0.999
sigmal[1] 1.295 0.063 0.170 0.997 1.672 7 1.306
sigmal[2] 0.787 0.006 0.032 0.728 0.856 28 1.076
0.074 0.181 -0.856 -0.199 6 1.377

Omegal[1,2] -0.555

Unfortunately the results for the random effects are terrible,
indicating lack of convergence and an effective sample size for the
correlation of just 6!
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| conclude that it is hard to estimate separate propensities for zero
and positive counts. A simpler model postulates a single standard
normal propensity z to visit a doctor. The logit equation has a
term o1z to affect the probability of one or more visits, and the
Poisson equation has a term o,z to affect the parameter p.

This model runs in just about half an hour and yields sensible
results:

> print(hgr, pars=c("beta1[1]", "beta2[1]", "sigma"),probs=c(.025,.975),digits_summary=3)

mean se_mean sd  2.5% 97.5% n_eff Rhat

betal[1] -0.189 0.003 0.102 -0.389 0.012 1000 0.999
beta2[1] -0.018 0.001 0.037 -0.087 0.056 1000 0.999
sigma[1] 0.917 0.010 0.142 0.647 1.198 192 1.013
0.002 0.032 0.748 0.874 174 1.007

sigma[2] 0.811

The reform has a large effect on whether women visit a doctor,
and no effect on the number of visits of those who do. It would
probably be worth running two longer chains to confirm the results.
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Categorical Data

Our final week deals with multilevel models for categorical data.
We will consider ordered logit models first, which are simpler, and
Multilevel Models then turn our attention to multinomial logit models.

11. Models for Ordinal Data MALMUS notes that at the time of writing there were no official
Stata commands for fitting multilevel models to categorical data
other than binary, but version 14 solved the problem for ordered
logits with meologit. As for multinomial logit models, it turns out
that they can be fit as structural equation models with gsem, as
noted by a Stata blogger.

German Rodriguez

Princeton University

April 30, 2018 On the R ecology | haven't found any package to fit multilevel
ordered or multinomial logit models by maximum likelihood, but
there are plenty of Bayesian solutions. We will use this opportunity
to gather a bit more experience using Stan.

‘ Ordered Logit Models ‘ Treating Schizophrenia
Recall than in an ordered logit model we focus on the logit of We'll analyze the example in MALMUS, a randomized trial
cumulative probabilities, so given an outcome Yj; for the j-th comparing four drugs and a placebo and measuring the severity of
observation in group i a random-intercept model would be illness using the Inpatient Multidimensional Psychiatric Scale

1 , (IMPS) at various intervals since randomization.
Pr{Yjla; > k} = logit™"(a; + X3 — 0k)
We combine all four drugs in a single “treated” group and recode

o 2y distri : . ) . .
where a; ~ N(0,073) is a normally-distributed random effect with the outcome into four severity categories: normal or borderline

: 2
mean 0 and variance o. (< 2.4), moderately ill (2.5 — 4.4), markedly ill (4.5 —5.4) and
The model may also be written in terms of a latent variable severely ill (5.5 —7), as done in the original analysis.
following a linear model As always, it pays to examine the data before analysis. Patients
Yi=a+ X;-jﬁ +ej can be seen for up to seven weeks, but the most common pattern
has observations in weeks 0, 1, 3 and 6. In fact no patient has
where e is standard logistic and Yj; > k <= YU* > 0, so the 0's more than 4 assessments.

may be interpreted as threshold parameters.

The equivalence follows from substituting the latent variable in
Pr{ YU* > 0x} and using the symmetry of the logistic distribution.
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‘ Plotting Cumulative Proportions

A useful diagnostic plot shows the empirical logits of the
proportions above each response category by week. Because weeks
2, 4 and 5 have very few assessments we omit them from the plot.
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The graph shows that the treatment is generally beneficial but the
trajectories are not linear. We will follow the original authors and
work with the square root of weeks as the time scale.
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‘ Random-Intercept Ordered Logits

Next we add a patient-specific random intercept, assumed
independent of the covariates across patients.

meologit impso weeksqrt treatment interact || id:
Mixed-effects ologit regression Number of obs = 1,603
Group variable: id Number of groups = 437
Integration method: mvaghermite Integration pts. = 7
Wald chi2(3) = 480.06
Log likelihood = -1701.3811 Prob > chi2 = 0.0000
impso | Coef. Std. Err. z P>|z| [95% Conf. Interval]
weeksqrt | -.7657629 .1307697 -5.86 0.000 -1.022067 -.509459
treatment | -.0603847  .3136873 -0.19  0.847 -.6752006 5544311
interact | -1.206126 .1526656 -7.90 0.000 -1.505345 -.9069068
/cutl | -5.860997 .3321236 -17.65 0.000 -6.511947 -5.210046
/cut2 | -2.828207 .2901595 -9.75 0.000 -3.39691 -2.259505
/cut3 | -.7103887 .2749679 -2.58 0.010 -1.249316 -.1714614

id

var(_cons) | 3.773713 .4650158 2.964009 4.80461

LR test vs. ologit model: chibar2(01) = 353.43 Prob >= chibar2 = 0.0000

This model yields an intra-class correlation of 0.53 in the latent
scale.
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‘ Ordered Logits
Obviously we will need to interact treatment and time to capture
treatment effects on the trajectory of each patient.

Here is a baseline ordered logit model representing population
average effects (with uncorrected standard errors)

Ordered logistic regression Number of obs = 1,603
LR chi2(3) = 501.26

Prob > chi2 = 0.0000

Log likelihood = -1878.0969 Pseudo R2 = 0.1177
impso | Coef. Std. Err. z P>|z| [95% Conf. Intervall
sqrtweek | -.5366467 .110815 -4.84 0.000 -.7538401 -.3194534
treatment | -.0006043 .1883287 -0.00 0.997 -.3697218 .3685132
interaction | -.7509692 .1276787 -5.88 0.000 -1.001215 -.5007235
/cutl | -3.807279 .1898591 -4.179396 -3.435162

/cut2 | -1.760167  .1702695 -2.093889  -1.426445

/cut3 | -.4221112 .1636329 -.7428258 -.1013965

Keep these in mind for comparison, as we move to models with
subject-specific effects.
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Interpreting Random Intercept Results

The treatment coefficient reflects initial differences and it is
reassuringly small and not significant.

The interesting coefficient is the interaction, which exponentiated
is 0.299. This indicates that the odds of begin above category 1, 2
or 3 of the IMPS are 70% lower in the treatment than in the
control group at any week after randomization.

The standard deviation of the random effect indicates very
substantial variation across patients, with the odds of being above
any category increasing seven-fold as we move up one standard
deviation from the mean with everything else the same.

We can also compute a median odds ratio exp{v/20,971(3/4)} as
6.37. This means that if we draw at random two patients with the
same covariates, the ratio of the odds of scoring above any given
category, when we compare the larger to the smaller odds, would
exceed 6.37 half the time.

Pop 510
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Random-Slope Ordered Logits

The next model allows the slope of the time variable to vary
randomly across patients. As usual we specify an unstructured
covariance matrix.

meologit impso weeksqrt treatment interact || id: weeksqrt, covariance(unstructured)
Wald chi2(3) = 254.29
Log likelihood = -1662.73 Prob > chi2 = 0.0000
impso | Coef.  Std. Err. z P>|z| [95% Conf. Intervall
weeksqrt | -.8821765 .2175176 -4.06 0.000 -1.308503 -.4558499
treatment | .05625632 .3898986 0.13 0.893 -.7116241 .8167505
interact | -1.695097 2520524 -6.73 0.000 -2.189111 -1.201084
/cutl | -7.32517 L4T27348 -15.50 0.000 -8.251714 -6.398627
/cut2 | -3.423091 .3857357 -8.87 0.000 -4.179119 -2.667062
/cutd | -.8174723 .3506013 -2.33 0.020 -1.504638 -.1303064
id |
var(weeksqrt) |  2.009688  .4179082 1.336977 3.020879
var(_cons) | 6.993466 1.313759 4.839381 10.10637
id |
cov(_cons,weeksqrt) | -1.504658 .5300824 -2.84 0.005 -2.5436 -.4657153

LR test vs. ologit model: chi2(3) = 430.73 Prob > chi2 = 0.0000
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| Fitting the Models in R

We now fit exactly the same models in R. | will not repeat the
graphs, but note that we can fit the standard proportional odds
logistic regression model using the function polr in the MASS
package. Given a data frame called sch the call is:

podds <- polr(impso ~ weeksqrt * treatment, data = sch)
> summary (podds)

Coefficients:

Value Std. Error t value
weeksqrt -0.5366419 0.1108 -4.842684
treatment -0.0005995 0.1883 -0.003183

weeksqrt:treatment -0.7509752 0.1277 -5.881755

Intercepts:

Value Std. Error t value
(0,2.411(2.4,4.4] -3.8073  0.1899  -20.0532
(2.4,4.411(4.4,5.4] -1.7602 0.1703 -10.3375
(4.4,5.411(5.4,7] -0.4221 0.1636 -2.5796

Residual Deviance: 3756.194
AIC: 3768.194

It is reassuring to see that we have the same results as in Stata.
We now try Stan.
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‘ Interpreting Random Slope Results

A comparison with the previous model yields a chi-squared of
77.24. Although the test is conservative (because we are on a
boundary of the parameter space) it is clearly highly significant.

The patient-specific odds ratio per unit of time is estimated as
0.41 in the control group and 0.07 in the treated group. Both the
intercept and slope vary substantially across patients with a
correlation of —0.40.

As MALMUS notes, this means that patients having more severe
schizophrenia at the start of the study tend to have a greater
decline in severity than those with less severe schizophrenia in both
the control and treatment groups.

We'll leave as an exercise computing subject-specific and
population-average predicted probabilities by treatment and week.
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Ordered Logit Model in Stan

We'll build the model in steps, starting from the standard ordered
logit model.

sch_code = ’

data {
int N; // number of observations
int K; // number of response categories
int D; // number of predictors
int<lower=1, upper=K> y[N]; // outcomes
row_vector [D] x[N]; // predictors

}

parameters {
ordered[K-1] theta;
vector[D] beta;

¥
model {
for(n in 1:N) {
y[n] ~ ordered_logistic(x[n] * beta, theta);
b
.
The code follows the Stan manual and is remarkably simple thanks
to the fact that there is an ordered data type to handle the
thresholds and an ordered_logistic distribution to take care of

converting the tail probabilities into a multinomial distribution.
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13/20 Germén Rodriguez Pop 510

Bayesian Ordered Logit Estimates

The next step was to put the data in a list and run Stan

sch_data <- 1list(N = nrow(sch), K = 4, D = 3,
y = as.numeric(sch$impso), x = as.matrix(sch[,c("treatment","weeksqrt","interaction")]))
ologit <- stan(model_code=sch_code, model_name="ologit", data=sch_data, iter=2000, chains=2)

| specified a few options to print the results in a convenient way

> print(ologit, digits_summary=3, probs=c(0.025,0.5,0.975))
Inference for Stan model: ologit.

2 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=2000.

mean se_mean sd 2.5% 50% 97.5% n_eff Rhat
theta[1] -3.820 0.008 0.191 -4.196 -3.825 -3.445 572 1.000
theta[2] -1.766 0.007 0.173 -2.084 -1.769 -1.419 554 0.999
theta[3] -0.423 0.007 0.167 -0.742 -0.424 -0.080 528 1.000
beta[1] 0.004 0.008 0.193 -0.364 -0.003 0.389 518 1.000
beta[2] -0.537 0.005 0.111 -0.739 -0.538 -0.315 554 0.999
beta[3] -0.757 0.005 0.129 -1.011 -0.757 -0.507 555 1.000
1p__ -1880.036 0.065 1.687 -1884.097 -1879.734 -1877.659 671 1.004

Samples were drawn using NUTS(diag_e) at Sat Apr 23 14:47:54 2016.

The Bayesian estimates are very similar to the maximum likelihood
estimates obtained earlier, so we soldier on.

‘ Additions for Random Intercept Model

15/20

The changes to the code include
@ adding the number of groups and a map to the data block
@ adding the group random effects and o, to the parameters

@ defining the prior for the random effects and modifying the
linear predictor
The code assumes that the group id’s are consecutive integers,
which is not the case in this dataset. | wrote the following general
function to map group id's when they are not the integers 1:M:

map_groups <- function(id) {
£ <- table(id)
rep(1:nrow(f), f)
s

And we can then add the map to the list

sch_data$g = map_groups(sch$id))

Germén Rodriguez Pop 510

Specifying a Random Intercept Model

Things get more interesting when we add a random intercept at
the patient level. We assume that a; ~ N(0, o) with a U(0,100)
prior on o and the default priors on everything else.

sch_code = ’
data {
int N; // number of observations
| int M; // number of groups
int K; // number of response categories
int D; // number of predictors

int<lower=1, upper=K> y[N]; // outcomes
row_vector [D] x[N]; // predictors
| int g[N]; // map observations to groups
s
parameters {
ordered[K-1] theta;
vector[D] beta;
| real a[M];
I real<lower=0, upper=10> sigma;

model {
| a ~ normal(0, sigma);
for(n in 1:N) {
| y[nl ~ ordered_logistic(x[n] * beta + alg[nl], theta);
}
3

A bar on the left margin marks new or changed lines.
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Running the Random Intercept Model

We can now run the model and (eventually) print the results. |
specify the parameters to be printed to omit the random effects

riologit <- stan(model_code=sch_code, model_name="riologit", data=sch_data, iter=2000, chains=2)

print(riologit, digits_summary=3, probs=c(0.025,0.5,0.975),
pars=c("theta[1]","theta[2]","theta[3]","beta[1]","beta[2]","beta[3]","sigma"))

Inference for Stan model: riologit.

2 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=2000.

mean se_mean sd  2.5% 50% 97.5% n_eff Rhat

theta[1] -5.882 0.018 0.329 -6.553 -5.873 -5.273 351 1.007
theta[2] -2.834 0.015 0.290 -3.420 -2.822 -2.288 383 1.004
theta[3] -0.703 0.013 0.273 -1.251 -0.694 -0.199 433 1.003
beta[1] -0.771 0.005 0.130 -1.032 -0.772 -0.519 629 1.000
beta[2] -0.043 0.015 0.308 -0.651 -0.035 0.530 409 1.003
beta[3] -1.210 0.006 0.150 -1.503 -1.208 -0.916 549 1.002
sigma 1.965 0.007 0.119 1.741 1.963 2.205 287 1.014

Samples were drawn using NUTS(diag_e) at Sat Apr 23 15:13:58 2016.

For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).

One again the results are very similar to the maximum likelihood
estimates, so we are encouraged to continue.
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‘ Specifying a Random Slope Ordered Logit Model

The final step is to add a random slope. Here's the new code:

sch_code =~
data {
int N; // number of observations
int M; // number of groups
int K; // number of response categories
int D; // number of predictors

int<lower=1, upper=K> y[N]; // outcomes
row_vector [D] x[N]; // predictors
int g[N]; // map observations to groups
vector[2] Zero; // means of random effects
¥
parameters {
ordered[K-1] theta;
vector[D] beta;
| vector[2] u[M];
| corr_matrix[2] Omega;
| vector<lower=0>[2] sigma;
¥
| transformed parameters {
| cov_matrix[2] Sigma;
| Sigma <- quad_form_diag(Omega, sigma);
| }

model {
| u ~ multi_normal(Zero, Sigma);
for(n in 1:N) {
y[n]l ~ ordered_logistic(x[n] * beta +
ulgnll[1] + ulglnl][2]*x[n][1], theta);
}
3>
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Running the Random Slope Ordered Logit Model

We add a vector of zeroes to the data and run the model
sch_data$Zero <- c(0,0)

rsologit <- stan(model_code=sch_code, model_name="rsologit", data=sch_data, iter=2000, chains=2)

When it's all done we print the results

Inference for Stan model: rsologit.
2 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=2000.

mean se_mean sd  2.5% 50% 97.5% n_eff Rhat

theta[1] -7.454 0.034 0.489 -8.415 -7.443 -6.542 211 1.008
theta[2] -3.485 0.018 0.393 -4.255 -3.477 -2.726 457 1.004
thetal[3] -0.839 0.013 0.359 -1.553 -0.825 -0.120 792 1.001
betal1] -0.892 0.008 0.221 -1.308 -0.892 -0.465 808 1.002
betal2] 0.055 0.013 0.399 -0.713 0.060 0.882 965 1.000
betal[3] -1.735 0.008 0.253 -2.227 -1.732 -1.234 941 1.000
Sigma[1,1] 7.482 0.129 1.381 5.067 7.411 10.453 114 1.016
Sigma[1,2] -1.647 0.055 0.558 -2.872 -1.616 -0.671 102 1.018
Sigma[2,1] -1.647 0.055 0.558 -2.872 -1.616 -0.671 102 1.018
Sigma[2,2] 2.198 0.049 0.470 1.364 2.169 3.213 93 1.012

Samples were drawn using NUTS(diag_e) at Sat Apr 23 17:03:40 2016.

One more time the results are similar to the maximum likelihood
estimates.
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Additions for Random Slope Ordered Logit Model

The basic idea is that we now have bivariate normal random effects

<3~ () (27)

with an unstructured covariance matrix. One way to parametrize
the variance-covariance matrix is in terms of non-negative standard
deviations o5, 0p and a correlation matrix, which is what we do
with sigma and Omega.

We then define a transformed parameter to obtain the 2x2
covariance matrix Sigma, which can be computed from the
standard deviations and correlations using the function
quad_form_diag().

All that remains then is to sample the bivariate random effects
from a multivariate normal distribution and add them to the linear
predictor, remembering to multiply the slope by the time variable.
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Trace Plots for Random Slope Model

traceplot(rsologit, pars=c("theta[1]","theta[2]","theta[3]","betal1]","beta[2]","betal3]",
"Sigma[1,1]","Sigmal[2,2]","Sigma[1,2]1"))
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Multilevel Models

12. Models for Nominal Data
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Princeton University

Random-Intercept Multinomial Logits

We now extend the model to two-level data so Yj; is the outcome
for individual j in group i. We introduce K random intercepts per
group, so the conditional probability of falling in category k is

ek txiBy
Zv eaiv+x;ﬁv

but set a;, = 0 so we are left with K — 1 random effects assumed
to have a multivariate normal distribution with mean vector zero
and arbitrary variance-covariance matrix.

Pr{Y; = kla;} =

The log-relative conditional probability of category k over r given
the random effects ajx for k # r is then

Pr{Yila;}

PR AA LI
Og Pr{»/”,|a’} ak +xlﬁk

SO aj, can be interpreted as a latent propensity to choose category

k over r net of the covariates.
Pop 510
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Multinomial Logit Model

Recall the multinomial logit model, where the probability of falling
in category k for individual i is

eXiBx
>, e
To identify the model we choose a category as reference and set
Br = 0 so the model has K — 1 sets of coefficients and is identified.

Pr{Y; =k} =

The k-th linear predictor x’3, is the log-relative probability of
category k relative to r (also called the log-odds of k over r).

The model can be interpreted in terms of random utilities where
the utility of choice k for individual i follows the linear model

/
Uik = xiBy + eix
where the ej are i.i.d. extreme value and U;, = 0 serves as a

baseline. Maximizing the expected utility leads to choosing
category k with the probability given above.

The McKinney Homeless Study

/18

We will illustrate the methods using the McKinney Homeless study,
which has generated interesting longitudinal data on 361 at-risk
individuals randomly assigned to one of two types of case
management (comprehensive vs. traditional) and one of two levels
of access to independent housing using “Section 8" certificates.

The outcome is housing status at baseline and at 6, 12 and 24
months, classified as streets/shelters, community housing, or
independent housing. The predictors of interest include time and
sec8, a dummy variable coded one for the treatment group.

The data have been analyzed by Don Hedeker, author of the
mixno package* for fitting mixed multinomial models using
Gauss-Hermite quadrature. We will fit essentially the same model,
although for simplicity we will treat time (coded 0 to 3) linearly
instead of using dummy variables.

*https://www.jstatsoft.org/article/view/v004i05
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Population Average Effects Maximum Likelihood via SEM

For reference purposes | fitted a standard multinomial logit model Stata does not have a command for multinomial logit models with
estimating population average effects (with uncorrected standard errors). . i
random effects, but Rebecca Pope explains how to fit the model
. mlogit status c.sec8##c.time, base(0) H H H H
Vultinomial logistic rogression Number of obs = 1,288 using structural equation models via gsem in the Stata Newsletter
o2 Ioaeer http://www.stata.com/stata-news/news29-2/xtmlogit/ using
Log likelihood = -1223.16 Pseudo R2 = 0.1146
gsem (1.status <- sec8 time secXtime RI1[id]) ///
status Coef. Std. Err. z P>|z| [95% Conf. Intervall (2.status <- sec8 time secXtime RI2[id]), mlogit}
street (base outcome) . .
The model defines two latent variables that vary across groups to
community H H
cecs | 2305588 2130131 1.42 0.261  -.1779395 6570564 capture random effects for each equation. The variances and
time .7961881  .1075957 7.40  0.000 .5853045  1.007072 covariance of these random effects are
c.sec8#c.time -.5180044 .1576099 -3.29 0.001 -.8269142 -.2090947
_cons | -.2109418  .1428502  -1.48 0.140  -.4909231  .0690395 z:ﬁggﬁg%; ;:;;’g:?: :ggggig 1;?:2?3; ::Z;ggz;
independe:zc8 1 157348 2551718 45 0.000 6572208 1657476 cov(RI2[id],RI1[id]) 1.701683 .5029326 3.38 0.001 .7159536 2.687413
time 1.138287 .123074 9.25 0.000 .8970665 1.379508
e cocsbo.vine | osostie 1637933 141 o150 - s519008 090157 This |mpI.|es a correlation of 0.66 betyveen the two latent variables
representing the contrast of community over street and of
_cons -1.405489 .1964876 -7.16  0.000 -1.790598 -1.02038 .
independent over street.
We'll compare these to Bayes estimates.
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Subject-Specific Effects Multinomial Logit Models via Stan

7/

The estimates of the fixed effects are shown below

Let us now explore fitting these models in a Bayesian framework
using Stan. We start with the standard multinomial logit model.

Coef. Std. Err. z P>|z]| [95% Conf. Intervall ) . A i
There is an example in the Stan manual using one equation per
0.status (base outcome) L. o -
o outcome, a model that they note is identified only “if there are
-status S ; )
secs | .3835373 2820853  1.36 0.175  -.1711037  .9381783 suitable priors on the coefficients”. A faster and in my view
time 1.015074 .1329061 7.64 0.000 . 7545826 1.275565 . . . .
secKtime | -.5786798  .181297  -3.19 0.001  -.9340153  -.2233442 preferable alternative is to work with only K — 1 equations for K
RT1[1d] 1 (constrained) response categories, as we did for maximum likelihood.
_cons -.2063278 .1926945 -1.07 0.284 -.5840022 .1713466 . . . . .
We define the coefficients to be estimated as a K — 1 by P matrix,
2.status .
secs 1.60725 .3791572  4.24  0.000 .8641157  2.350384 and then add a row of zeroes to match the reference category in a
time 1.530787 .1579142 9.69 0.000 1.221281 1.840293 . . .
secKtime | -.2223493 .1998801  -1.11 0.266  -.6141072  .1694085 new K by P matrix defined in the transformed parameters block.
RI2[id] 1 ( trained) . . . . age, - .
! conetrane The function used to convert multinomial logits to probabilities is
— -2.047767 .3034708 -6.75 0.000 -2.642559 -1.452975 . . . .
o called softmax in the machine learning literature and Stan. The

There is a trend away from the street, towards community housing

in the control group and towards independent housing in the

Section 8 group.
18
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newer function categorical logit() calls that implicitly.
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‘ Stan Code for Multinomial Logit

sd_model <- °’
data {
int K; // number of outcome categories
int Ki; // K-1
int N; // number of observations
int P; // number of predictors a.k.a. D

int y[N];// outcome, coded 1 to K for each obs
vector[P] x[N]; // predictors, including constant
}
transformed data {
row_vector [P] base;
base = rep_row_vector(0, P);
}
parameters {
matrix[K1,P] beta;

transformed parameters {
matrix[K, P] betap;
betap = append_row(base, beta);

model {
// prior for beta (vectorized)
for(k in 1:K1) {
betal[k] ~ normal(0,5);

// likelihood of outcome
for(n in 1:N) {
y[n] ~ categorical_logit(betap * x[nl);

}

>
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‘ Comparison of Maximum Likelihood and Bayes

Here's a side-by-side comparison of ML and Bayes estimates by

equation
Variable Community/Street  Independent/Street
Name ML Bayes ML Bayes
sec8 0.240 0.246  1.157 1.171
time 0.796 0.805 1.138 1.151
interaction -0.518 -0.525 -0.231 -0.239
constant -0.211 -0.216 -1.405 -1.421

| think the agreement is quite remarkable. We are thus encouraged
to try adding random effects.
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‘ The Stan Output

And here are the results of running the model

mlogit <- stan(model_code=sd_model,model="mlogit",data=sd_data,iter=2000,chains=2)
> print(mlogit, pars="beta", digits_summary=3, probs=c(0.025,0.5,0.975))

Inference for Stan model: mlogit.

2 chains, each with iter=2000; warmup=1000; thin=1;

post-warmup draws per chain=1000, total post-warmup draws=2000.

mean se_mean sd 2.5 50% 97.5% n_eff Rhat

beta[1,1] -0.216 0.005 0.148 -0.503 -0.216 0.070 872 1.001
beta[1,2] 0.246 0.007 0.218 -0.184 0.249 0.662 966 1.000
beta[1,3] 0.805 0.004 0.109 0.602 0.804 1.026 933 1.004
beta[1,4] -0.525 0.005 0.159 -0.832 -0.526 -0.213 919 1.003
beta[2,1] -1.421  0.007 0.201 -1.835 -1.423 -1.044 724 1.000
betal[2,2] 1.171 0.009 0.263 0.669 1.174 1.684 878 1.000
beta[2,3] 1.1561 0.005 0.124 0.906 1.154 1.386 669 1.002
beta[2,4] -0.239 0.006 0.166 -0.558 -0.241 0.086 830 1.002

Samples were drawn using NUTS(diag_e) at Tue May 01 13:47:57 2018.

For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).

The measures of effective sample size are all reassuring and the
values of Rhat are close to 1 as they should be at convergence.
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Random Intercepts in Multinomial Logits

We will add two correlated random intercepts for each individual,
representing unobserved effects on the propensity to be in
community and in independent housing rather than on the street.
To define the model | generally followed the Stan manual.

We will define the multivariate normal distribution in terms of a
vector of scale parameters and a matrix of correlations, which are
the actual parameters to be estimated, just as we did for the
random slope ordered logit model. This time, however, | defined
the vector of means in a transformed data block.

In the model block we define the priors and hyper-priors for the
random effects. The random effects are multi normal. For the
scales of the random effects | tried half cauchy (0, 2.5) priors,
but got better results with uniforms. For the correlation | used a
LKJ prior with parameter 2; for more on this prior see

http://www.psychstatistics.com/2014/12/27/d-1kj-priors/.
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tan Code for Random-Effects Multinomial Logit

The model is long enough that | will present it in two parts. Here's
Part 1 showing the data, transformed data and parameters.

sd_model <- ’
data {
int K; // number of outcome categories
int Ki; // k-1
int N; // number of observations
int P; // number of predictors a.k.a. D
int y[N]; // outcome, coded 1 to K for each obs
vector[P] x[N]; // predictors, including constant
int G; // number of groups
int map[N]; // map obs to groups

transformed data {
vector [K1] zero;
real baseline;
zero = rep_vector(0, K1);
baseline = 0;

parameters {
matrix[K1,P] beta; // fixed effects
corr_matrix[K1] omega; // ranef correlations
vector<lower=0,upper=10>[K1] sigma; // ranef scales
vector [K1] ulG]; // random intercepts

¥
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\ Results

This is the call used to run the model

rimlogit <- stan(model_code=sd_model,model="rimlogit",data=sd_data,iter=2000,chains=2)

And these are the results

> print(rimlogit, digits_summary=3, probs=c(0.025,0.5,0.975),
+ pars=c("beta","sigma","omegal1,2]"))

Inference for Stan model: rimlogit.

2 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=2000.

mean se_mean sd  2.5% 50% 97.5% n_eff Rhat

betal[1,1] -0.208 0.004 0.197 -0.602 -0.207 0.175 2000 0.999
betal1,2] 0.363 0.006 0.291 -0.193 0.357 0.944 2000 1.001
betal1,3] 1.018 0.005 0.133 0.770 1.016 1.281 865 1.001
beta[1,4] -0.583 0.004 0.175 -0.919 -0.587 -0.252 2000 1.001
beta[2,1] -2.056 0.008 0.298 -2.633 -2.048 -1.477 1260 1.000
betal2,2] 1.584 0.009 0.371 0.872 1.576 2.301 1566 1.000
beta[2,3] 1.535 0.005 0.156 1.236 1.530 1.852 1064 1.000
beta[2,4] -0.215 0.004 0.194 -0.616 -0.215 0.142 2000 1.000
sigmal[1] 1.339 0.015 0.196 0.943 1.333 1.732 172 1.008
sigma[2] 1.965 0.011 0.198 1.620 1.957 2.378 322 1.002
omega[1,2] 0.625 0.006 0.092 0.427 0.632 0.778 254 1.000

Samples were drawn using NUTS(diag_e) at Tue May 01 10:58:04 2018.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).
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m-Effects Multinomial Logit

And here's Part 2, showing transformed parameters and the model
block:

transformed parameters{
cov_matrix[K1] V;
V = quad_form_diag(omega, sigma);

model {
// prior for beta (vectorized)
for(k in 1:K1) {
beta[k] ~ normal(0,5);
s
// prior/hyper prior for random effects
// sigma ~ cauchy(0, 2.5);
omega ~ 1lkj_corr(2);
for(g in 1:G) {
ulg] ~ multi_normal(zero, V);
s
{ // local block for linear predictor
vector[K] xb;
for(n in 1:N) {
xb = append_row(baseline, beta*x[n] + u[map[n]]l);
y[n] ~ categorical_logit(xb);

}
3

The local block is used to add a zero to the linear predictor.
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Comparison of Estimates

Here are the maximum likelihood and Bayesian estimates

Variable Community/Street Independent/Street

Name ML Bayes ML Bayes
sec8 0.384 0.363 1.620 1.584
time 1.015 1.018 1.536 1.535
interaction -0.579 -0.583 -0.220 -0.215
constant -0.206 -0.208 -2.079 -2.056
scale 1.321 1.339 1.954 1.975
correlation  0.659 0.625

The two sets of estimates are remarkably close, as one would
expect from generally non-informative priors.

| report the posterior means of the scale parameters and
correlation coefficient rather than the variances and covariance, so
for comparability | translated the maximum likelihood results.

16/18 German Rodriguez Pop 510




‘ Trace Plots and Posterior Densities ‘ Calculating Predicted Pr
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We can extract any coefficient using extract. Here's the
correlation of the random effects

r <- as.data.frame(extract(rimlogit, pars="omega[1,2]"), permute=FALSE)

And we can then do trace and/or density plots

Correlation of Random Effects

<
2 \
54y I [ ©
< ‘\‘H" ) \HM \‘H’ \ lt’ | ‘w §
=1 [ { g~
T e e e “02 05 04 05 o8 o7 o8 oo

N =2000 Bandwidth =0.0178

Index

We have a nice fuzzy caterpillar and the posterior is fairly
symmetric around the mean of 0.6.
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abilities

We can also use the samples to calculate any function of interest.
Here's code to compute the predicted probabilities for the average
person at time 3 under control and “Section 8" conditions.

ep <- as.data.frame(extract(rimlogit, "beta"))
names (ep)<-c("cons1","cons2","secl","sec2","timel","time2","int1","int2")
u0 = cbind(0, epl,"cons1"]l+epl,"time1"]1*3, epl[,"cons2"]+ep[,"time2"]*3)
pO = colMeans (exp(u0)/rowSums (exp(u0)))
ul = u0 + cbind(0, epl[,"sec1"]+ep[,"int1"]1*3, ep[,"sec2"]+ep[,"int2"]1*3)
pl = colMeans (exp(ul)/rowSums (exp(ui)))
rbind(p0,p1)

[,1] [,2] [,3]
p0 0.03376637 0.5530774 0.4131562
pl 0.02773570 0.1153388 0.8569255

VVVVVVYV

The probability of being in independent housing at the end of
follow up for the average person is 41% in the control group and
86% in the Section 8 group, with only 3% on the street.

Try doing a trace and/or density plot, or constructing a 95%
credible interval for the probability of independent housing.
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