Smoothing and Non-Parametric Regression

German Rodriguez
grodri@princeton.edu

Spring, 2001

Objective: to estimate the effects of covariates X on a response y non-
parametrically, letting the data suggest the appropriate functional form.

1 Scatterplot Smoothers

Consider first a linear model with one predictor

y=f(z) +e

We want to estimate f, the trend or smooth. Assume the data are ordered
SO X1 < Tg < ... < xp. If we have multiple observations at a given x; we
introduce a weight w;.

1.1 Running Mean
We estimate the smooth at z; by averaging the y’s corresponding to z’s in
a neighborhood of x;:

JEN (z3)

for a neighborhood N(x;) with n; observations. A common choice is to take
a symmetric neighborhood consisting of the nearest 2k 4+ 1 points:

N(z;) = {max(i — k,1),...,i— 1,4,i+ 1,...,min(i + k,n)}.

Problems: it’s wiggly, bad near the endpoints (bias). Use only for equally
spaced points.

1.2 Running Line

One way to reduce the bias is by fitting a local line:

S(@i) = i + By,
where &; and Bz are OLS estimates based on points in a neighborhood N (z;)
of ;. This is actually easy to do thanks to well-known regression updating

formulas. Extension to weighted data is obvious. Much better than running
means.

1.3 Kernel Smoothers

An alternative approach is to use a weighted running mean, with weights
that decline as one moves away from the target value. To calculate S(z;),
the j-th point receives weight

_ G lri = @
Wij =)\d(A)7
where d(.) is an even function, A is a tunning constant called the window
width or bandwidth, and ¢; is a normalizing constant so the weights add up
to one for each z;. Popular choices of function d(.) are

e Gaussian density,
e Epanechnikov: d(t) = %(1 —2),t2 < 1, 0 otherwise,
e Minimum var: d(t) = (3 — 5t%),1? < 1, 0 otherwise.

One difficulty is that a kernel smoother still exhibits bias at the end
points. Solution? Combine the last two approaches: use kernel weights to
estimate a running line.

1.4 Loess/Lowess

One such approach is loess, a locally weighted running line smoother due to
Cleveland and implemented in S and R. To calculate S(x;) you basically

e find a symmetric nearest neighborhood of x;,
e find the distance from z; to the furthest neighbor and use this as A,
e use a tri-cube weight function d(t) = (1 —#%)3,0 <t < 1, 0 otherwise,

e estimate a local line using these weights, take the fitted value at z; as

A variant uses robust regression in each neighborhood.

1.5 Other Approaches

Splines are a popular family of smoothers. We will study splines in the next
section.

All of the methods discussed so far are linear smoothers, we can always
write

S(z) = Ay

where S and y are n-vectors and A is an n X n matrix that depends on the
’s.

There are also non-linear smoothers. These are usually based on running
medians, followed by enhacements such as Hanning, splitting, and twicing.
Popularized by Tukey, two of the best known smoothers are called 3RSSH
and 4253H, where the nomenclature indicates the span of the running me-
dians (4,2,5,3) and the enhacements (H for Hanning). We will not discuss
these.

2 Splines

A spline is a piece-wise polynomial with pieces defined by a sequence of
knots

§1 <6< <&

such that the pieces join smoothly at the knots.

The simplest case is a linear spline.

For a spline of degree m one usually requires the polynomials and their
first m — 1 derivatives to agree at the knots, so that m — 1 derivatives are
continuous.

A spline of degree m can be represented as a power series:

m k
S(x) =Y BiX7+> Nz — &)}
=0 j=1
where the notation

0, otherwise

r—E&j,x>¢&;
w@nz{ o
Ezxample: Here is a linear spline, with one knot:

S(z) = Bo + fix +y(x — &) +.

The most popular splines are cubic splines:

k
S(x) = o + iz + fox® + Baa® + Y vj(x — &)3.

j=1
We will focus on these.
2.1 Interpolating Splines
Supose we know the values of a function at k£ points 1 < ... < zp and

would like to interpolate for other x’s.

If we were to use a spline of degree m with knots at the observed x’s,
we would have m + 1 + k parameters to estimate with only k& observations.
Obviously we need some restrictions.

2.1.1 Natural Splines

A spline of odd degree m = 2v — 1 is called a natural spline if it is a
polynomial of degree v — 1 outside the range of the knots (i.e. below & or
above &).

A natural cubic spline is linear outside the range of the data. For a
natural spline

B; =0 forj=v,...,2v -1
SE €l =0 forj=0,1,...,0— 1.

This imposes exactly m + 1 restrictions, so we have k parameters left. Note
that a natural cubic spline has the form

k
S(@) = Bo+ Bz + > vz — &),
j=1

subject to the restrictions

Zvjzo and Z’yjfj:O

so we end up with k parameters.

2.1.2 Restricted Splines

An alternative is to introduce other boundary restrictions. For example one
could consider points a < x1 and b > z,, and fix the value of the spline and
the value of some of its derivatives at a and b.

For a cubic spline we need 4 restrictions, so we could fix the values and
the first two derivatives:

S(a), ' (a), S(b), S'(b),

usually to things like 0. (For example one could assume fertility at ages 12
and 50 is zero and is not changing. See McNeil et al in the readings for just
such an example.)

Estimation of the parameters of either a natural or restricted interpolat-
ing spline amounts to solving a simple system of linear equations.

2.2 Spline Regression

Consider now the problem of smoothing a scatterplot, as opposed to inter-
polating.

One approach is to select s suitable set of knots with & << n (that
means k substantially less than n), and then fit a spline by OLS (or WLS,
or maximum likelihood).

For a cubic spline, this amounts to regressing y on k + 4 predictors,
namely

]-7 J")3727:1737 (ZE - gl)i) (17 - 52)3»7 RIS (13 - gk)i

For a natural cubic spline we would drop z2 and 2> and impose the additional

constraints
dov=) =0

Actually, these constraints can be eliminated by suitable re-parametrization.
For example a natural cubic spline with two interior knots plus one knot at
each extreme of the data can be fit by regressing y on three covariates, x,
z1 and z9, where

3 (&1—¢&4)

z1=(r— &)} — 53_754)(%‘ — &)
nd - &)
2= (z— &)} - 532_7544)(95 —&)h.

The proof is left as an exercise.

2.2.1 B-Splines

The power series representation is useful for understanding splines but is
not well suited for computation because successive terms tend to be highly
correlated. It is, however, very easy to use. Be judicious.

A much better representation of splines for computation is as linear
combinations of a set of basis splines called B-splines. These are numerically
more stable, among other reasons because each B-spline is non-zero over a
limited range of knots. They are not so easy to calculate, but fortunately R
and S have functions for calculating a basis, see bs for B-splines and ns for
natural B-splines.

Regression splines are very popular (particularly with me :-) because
they are easy to use, and can be incorporated without difficulty as part of
other estimation procedures.

The main problem is where to place the knots. Often they are placed at
selected quantiles (i.e. the terciles, or quartiles, or quintiles, depending on
how many knots you want). A smarter strategy would place more knots in
regions where f(z) is changing more rapidly. Knot placement is an arcane
art form, and the first disadvantage cited by detractors of regression splines.

2.3 Smoothing Splines

A more formal approach to the problem is to consider fitting a spline with
knots at every data point, so potentially it could fit perfectly, but estimate
its parameters by minimizing the usual sum of squares plus a roughness
penalty.

A suitable penalty is to integrate the squared second derivative, leading
to the following criterion, known as the penalized sum of squares:

n

PSS = > (i — S(x:))? +)\/(S”(x))de

i=1

where integration is over the range of x and A is a tuning parameter. As
A — 0 we impose no penalty and end up with a very close fit, but the
resulting curve could be very noisy as it follows every detail in the data. As
A — oo the penalty dominates and the solution converges to the OLS line,
which is as smooth as you can get (the second derivative is always 0), but
may be a very poor fit.

Amazingly, it can be shown that minimizing the PSS for a fixed A over
the space of all continuous differentiable functions leads to a unique solution,
and this solution is a natural cubic spline with knots at the data points.

More generally, penalizing the squared v-th derivative leads to a natural
spline of degree 2v — 1. For a proof see Reinsch (1967).

2.3.1 Computation

Implicit in the work of Reinsch is the fact that the penalty may be written
as a quadratic form

(8" @) = p'Kp

where = S(x;) is the fit, K is an n x n matrix given by K = A'/W~1A, A
is an (n — 2) X n matrix of second differences, with elements
1 1 1 1

Njj=—Ajjp1 == — 77—, Aji12=
' o hi hi TP h

it+1
W is a symmetric tridiagonal matrix of order n — 2 with elements
hi _hithip

— Wi =
) 7
3

Wisii=W;i1= 5

and h; = §;+1 — &;, the distance between successive knots (or = values).
This implies that we can compute a smoothing spline as

S(z) = (I +) K) ty.
Proof: Write the penalized sum of squares as

PSS = (y —) (y — p) + M/'Kp

Taking derivatives

OPSS

—9(y — INK
on (y —p) + 1

Setting this to zero gives
Y= i+ MK = (I + AK)f,

and premultiplying both sides by (I + AK)~! completes the proof.

Any serious implementation of smoothing splines would take advantage
of the banded nature of these matrices to economize storage and compute
the required inverses, but these formulas can be used as they are for small
or moderate n.

2.3.2 Extensions to WLS and GLMs
The result extends easily to WLS, where we minimize the weighted PSS
WPSS = (y —) W(y — p) + M/ Kp.
The same steps we followed before lead to
S(z) = (W + \K) 'Wy.

This strategy can be extended to GLMS with link n, where we would smooth
the linear predictor or transformed mean

n(pi) = S(x;)

by maximizing a penalized log-likelihood, or equivalently, solving a series of
penalized weighted least squares problems.

(The situation is exactly analogous to maximizing the usual log-likelihood
via iteratively re-weighted least squares.)

2.4 Cross-Validation

We have solved the problem of knot placement, but now we have to pick an
appropriate value for A. Some claim this is easier, because we are left with
a single number to worry about.

Wabba and others have suggested a technique know as cross-validation.
Let 5’§_Z) denote the spline fit with tuning parameter A while omitting the
i-th observation. We can compare this fit with the observed value y;, and
we can summarize these differences by computing a sum of squares

RS &(—1) 2
CVSS = — Z(yz - S)\ ((L‘Z))
Nz
which depends on A. The idea is to pick A to minimize the CVSS.

This sounds like a lot of work but in fact it isn’t, thanks again to regres-

sion updating formulas, which can be used to show that

L (5= 506)
CVSS = — =4 -
n ; < 1-— A”)
where A;; is a diagonal element of A = (I — AK)~!. This extends easily to
WLS.

An alternative criterion is to replace the A;; by their average, which is
tr(A)/n. This leads to a generalized CVSS that has been found to work well
in practice.

2.4.1 Effective DF

A much simpler strategy advocated by Hastie and Tibshirani is to decide in
advance how many d.f one is willing to spend on a fit. If a smoothing spline
(or in fact any linear smoother) has the form

S = Ay

then we define the degrees of freedom as tr(A), the sum of the eigenvalues.
Two other popular definitions are

n —tr(2A — AA") and tr(AA")

All three are motivated by analogy with linear models, where the role of
A is played by the ‘hat’ matrix H = X(X’X)~!X’. The general idea is to
search for a value of A that produces a matrix A with trace equal to the
desired degrees of freedom.

2.5 P-Splines

There is an intermediate solution betwen regression and smoothing splines,
proposed more recently by Eilers and Marx.

The idea is to start with a B-spline basis with somewhat more knots
than you would use if you were doing regression splines (but not as many
as one per observation), and then introduce a roughness penalty as you do
with smoothing splines.

The novelty is that these authors propose using symmetric B-splines
and penalize them not on the second derivatives, but instead on the differ-
ences between the coefficients of adjacent splines, a criterion that is easy to
implement, yet turns out to be closely related to the usual penalty.

Suppose we pick a set of k splines to start with. Let Bj(x) denote the
J-th B-spline evaluated at = and let «; denote it’s coefficient. Then the idea
behind P-splines is to minimize

n

k !
PSS => (yi— > o;Bi(z:))* + A > (APaj)?
=1

i=1 j=p+1

where A is the difference operator and p is the order of the penalty.

The main advantage of P-splines over smoothing splines is that the calcu-
lations are simpler because fewer knots are used. Moreover, the calculations
can be easily implemented using a data augmentation algorithm. We will
return to this topic in the context of survival analysis.

3 Semi-Parametric Models

So far we have considered models with only one x. Let us take a small
step forward by considering several z’s where one (henceforth denoted t)
is treated non-parametrically, and the others (denoted X) are handled the
old-fashioned way. We could consider a linear model, where

y=XpB+S(t)+e
or a generalized linear model, where

E(y)=p and n=g(p)=X3+S(t)

Green and Yandell discuss estimation of this model by maximizing the pe-
nalized log-likelihood

1
PLL = log L(f,7) = 52" K7,

where v = S(t) is the smooth and +'K~ is the matrix form of the penalty.

This log-likelihood can be maximized using relatively straightforward
extensions of the IRLS algorithm.

An even simpler alternative is to use regression splines to estimate S(t),
in which case we are back in the usual framework of fully parametric models.

In the end the decision amounts again to a choice between fixing the
knots or fixing the tuning parameter. P-splines may well represent a sensible
compromise between these two alternatives.

Each approach has its advocates and sometimes the discussions get quite
lively. You may enjoy the discussions that follow the papers by Ramsay, on
monotone splines, and Eilers and Marx, on P-splines, both in Statistical
Science.

4 Non-Parametric Models

Let us now consider the case of several predictors that we would like to treat
non-parametrically.
4.1 The Curse of Dimensionality

One might consider multidimensional smoothers aimed at estimating S in
the model
Yy = S(x17$27"'7xp) +€

10

Running means are easily generalized if one can define a neighborhood in p-
dimensional space. These are typically spherical, but it is not clear whether
one should measure distance in the original scale, or after standardizing the
variables, or indeed after taking into account their correlation structure,
using for example, Mahalanobis distance as the metric.

A related problem is that, as the number of dimensions increases, the
neighborhoods become increasingly less local. With uniform data in a cube
we get 10% of the points by moving 0.1 in one dimension, but in 10 dimen-
sions we need to move 0.8 to get 10%, so the neighborhood is hardly local
any more.

Very similar comments apply to running lines.

Kernel smoothers can be extended too, a popular choice of kernel in two
dimensions is the bivariate normal distribution.

Splines have been generalized as well. An example in two-dimensions is
the so-called thin-plate spline, which penalizes all three second derivatives
02S/02%,0%S/023, and 0*S/0x10z2.

All of these techniques are useful for small p, say p = 2, and can be
computationally quite intensive.

4.2 Additive Models

Hastie and Tibshirani have proposed using additive models with separate
smoothers for each coordinate, so the model becomes

y=a+ S (x1)+ Sa(w2) + ...+ Sp(xp) + €

The choice of smoother is left open, one could use a smoothing spline for
x1, a simple linear term for xo, a running line for x3, and so on.

Note the lack of interactions. The hope is that a suitable transformation
of each coordinate will make the additive structure appropriate, hence the
name additive models.

There are three main approaches to fitting this type of model, in increas-
ing order of complexity:

e Multiple linear regression: easy but rigid.
e Regression splines: pick a basis for each x;, ideally B-splines, and fit

the model by regression or maximum likelihood. Convenient and quite
flexible, but requires knot placement.

e General smoothers: use a smoothing spline, or in fact any scatterlot
smoother, for each x;. This approach is computationally intensive but
very flexible.

11

Hastie and Tibshirani proposed a simple estimation procedure that works
well for the more complex case with arbitrary smoothers, known as the
backfitting algorithm:

e Provide initial values for the constant o and all S;. A sensible choice
is o’ = 7, and SY given by the linear regression of y on ;.

e Cycle through the predictors:

— calculate y — af — il Sg and smooth against z;

— calculate y — aJ — Doito S{ and smooth against z

— calculate y — o/ — Ditp Sf and smooth against x,
e Repeat the cycling until the S’s do not change.

Surprinsingly, the algorithm works and converges to the correct solution.
You may easily try this for a multiple regression with two predictors. It
will eventually converge to the OLS solution if by ‘smooth’ you read ‘run a
simple linear regression’. In fact the method is related to the Gauss-Seidel
algorithm for solving systems of linear equations.

The algorithm seems to work well in practice with a variety of smoothers,
although proofs of convergence are available only for special cases, most
notably smoothing splines.

The same idea can be extended to generalized linear models. We now

have
P

E(y)=p and n=g(p)=a+) ;).
j=1

It turns out that the backfitting algorithm can be adapted to fit this model
as well. (This should be no surprise by now considering the close connection
between maximum likleihood and IRLS.) The resulting algorithm is called
local scoring.

The local scoring algorithm is implemented is the S function gam, which
regretably is not available in R (yet).

12

