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POP 502 / ECO 572/ SOC 532  • SPRING 2017 

The life table summarizes the experience of a population. This is not representative of the experience of 
individuals unless these are homogenous. This unit deals with the consequences of unobserved 
heterogeneity, with an application to the mortality cross-over in Black and White mortality in the U.S.  A 
classic reference is Vaupel, Manton and Stallard (1979).  

The Multiplicative Frailty Model 

A popular approach to modeling unobserved heterogeneity assumes that the hazard 𝜇𝜇𝑖𝑖(𝑥𝑥) for individual 
𝑖𝑖 at age 𝑥𝑥 is the product of two terms, a baseline hazard 𝜇𝜇0(𝑥𝑥) and a multiplicative term 𝜃𝜃𝑖𝑖 representing 
the individual’s frailty, so 

𝜇𝜇𝑖𝑖(𝑥𝑥) =  𝜇𝜇0(𝑥𝑥)𝜃𝜃𝑖𝑖 

A person with 𝜃𝜃 = 1 represents the baseline risk. A person with 𝜃𝜃 = 1.5 has 50% higher risk than our 
reference individual at every age. A person with θ = 0.5 has 50% lower risk than the reference 
individual. The formulation is just like a proportional hazards model, except that we don’t observe a 
person’s frailty.  

Let  𝑝𝑝𝑖𝑖(𝑥𝑥) denote the probability that individual 𝑖𝑖 will survive to age 𝑥𝑥,  

𝑝𝑝𝑖𝑖(𝑥𝑥) = Pr{𝑋𝑋 > 𝑥𝑥} =
𝑙𝑙𝑖𝑖(𝑥𝑥)
𝑙𝑙𝑖𝑖(0) 

This is just 𝑙𝑙𝑖𝑖(𝑥𝑥) if the radix is 1. From our results relating survival probabilities to hazards we have 

𝑝𝑝𝑖𝑖(𝑥𝑥) = 𝑝𝑝0(𝑥𝑥)𝜃𝜃𝑖𝑖 

where 𝑝𝑝0(𝑥𝑥) is the baseline survival probability. This follows from writing the survival probability as 
𝑝𝑝𝑖𝑖(𝑥𝑥) = exp {−∫ 𝜇𝜇𝑖𝑖(𝑎𝑎)𝑑𝑑𝑎𝑎𝑥𝑥

0 } and then substituting the model for the individual hazard.  So if the 
reference individual has an 80% change of living to age 60, one with 𝜃𝜃 = 1.5 has only a 72% chance, 
whereas one with 𝜃𝜃 = 0.5 has an 89% chance.  

Gamma Frailty 

The next step is to assume that frailty has a distribution in the population. A common assumption is to 
postulate a gamma distribution, which has density 

𝑔𝑔(𝜃𝜃) =
𝜃𝜃𝛼𝛼−1𝑒𝑒−𝛽𝛽𝜃𝜃𝛽𝛽𝛼𝛼

Γ(𝛼𝛼)
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 with parameters 𝛼𝛼 and 𝛽𝛽 . The mean is 𝛼𝛼/𝛽𝛽 and the 
variance is 𝛼𝛼/𝛽𝛽2, so we often set  𝛼𝛼 = 𝛽𝛽 = 1/𝜎𝜎2 to 
get a mean of one and a desired variance. The figure 
on the side shows gamma densities with mean one 
and variances of one, a half, a quarter and 1/8.  

One could use other distributions for frailty, and 
results have been obtained for discrete mixtures and 
for cases where frailty has an inverse Gaussian or a 
compound Poisson distribution, but gamma is by far 
the most popular choice. 

Population Average Survival 

The survival function we estimate with a life table is an average for individuals with different frailties. 
Suppose the entire population consisted of just the three individuals in the initial example. Then the 
average probability of living to age 60 would be 80.3%, the average of 80, 72 and 89.  

Of course a population will have more than three individuals, so we average using the distribution of 
frailty. The average survival probability in the population is then 

𝑝𝑝(𝑥𝑥) = � 𝑝𝑝0(𝑎𝑎)𝜃𝜃𝑔𝑔(𝜃𝜃)𝑑𝑑𝜃𝜃
∞

0
 

In general this is not the same as the baseline. We call 𝑝𝑝(𝑥𝑥) the population-average survival.  

If frailty has a gamma distribution with mean one and variance 𝜎𝜎2, then with a bit of algebra one can 
show that the population survival is given by 

𝑝𝑝(𝑥𝑥) =
1

[1 + 𝜎𝜎2𝐻𝐻0(𝑥𝑥)]
1
𝜎𝜎2

 

 where 𝐻𝐻0(𝑥𝑥) = ∫ 𝜇𝜇0(𝑎𝑎)𝑑𝑑𝑎𝑎𝑥𝑥
0  is the integrated baseline hazard. This is a Pareto distribution of the second 

kind.  

Survival functions are useful but not terribly informative, so I turn attention to the hazard. 

Population Average Hazard 

To compute the population hazard we proceed from first principles, taking the negative log of the 
survival probability to obtain a cumulative (or integrated) hazard and then differentiating to obtain the 
hazard. If we follow that approach it can be shown that 

𝜇𝜇(𝑥𝑥) = 𝜇𝜇0(𝑥𝑥)𝐸𝐸(𝜃𝜃|𝑋𝑋 > 𝑥𝑥) 

where 𝐸𝐸(𝜃𝜃|𝑋𝑋 > 𝑥𝑥) is the expected value of frailty among survivors to age 𝑥𝑥.  
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A more specific result can be obtained if we assume that frailty at birth has a gamma distribution with 
mean one and variance 𝜎𝜎2. In that case the mean frailty of survivors to age 𝑥𝑥 is 

𝐸𝐸(𝜃𝜃|𝑋𝑋 > 𝑥𝑥) =
1

1 + 𝜎𝜎2𝐻𝐻0(𝑥𝑥) 

where 𝐻𝐻0(𝑥𝑥) is the integrated baseline hazard, as before.  Thus, under gamma frailty the population 
average hazard is 

𝜇𝜇(𝑥𝑥) =
𝜇𝜇0(𝑥𝑥)

1 + 𝜎𝜎2𝐻𝐻0(𝑥𝑥) 

At birth mean frailty is one and the population average hazard is the same as the baseline individual 
hazard. As time goes by, however, the mean frailty of survivors declines, becoming less than one, and as 
a result the population average hazard becomes lower than the baseline individual hazard. This can be 
seen from the fact that the integrated hazard, which increases with age, is in the denominator of the 
formulas for the mean frailty and the population average hazard.  

Our interpretation is this result is that the frail tend to die first, so over time the population becomes 
increasingly selected, consisting of individuals who are more robust. Note also that frailty declines faster 
(so selection operates more quickly) when the population is more heterogeneous to start with (larger 
𝜎𝜎2) or the risk is higher (larger baseline hazard 𝜇𝜇0(𝑥𝑥) and hence larger 𝐻𝐻0(𝑥𝑥)).  

Example:  To fix ideas consider a situation where the hazard is constant over time for each individual but 
there is heterogeneity of frailty. Specifically suppose the individual hazard is 𝜇𝜇0𝜃𝜃, where 𝜇𝜇0 is the 
baseline hazard and 𝜃𝜃 denotes frailty. If frailty has a gamma distribution then the population hazard is 

𝜇𝜇(𝑥𝑥) =
𝜇𝜇0

1 + 𝜎𝜎2𝜇𝜇0𝑥𝑥
 

and declines from 𝜇𝜇0 at birth to zero as 𝑥𝑥 → ∞.  It will decline faster for larger 𝜇𝜇0 or larger 𝜎𝜎2. 

A constant hazard model doesn’t work well for mortality but it approximates other situations, such as 
time to conception among fecund women trying to conceive a child. Assume that each woman’s 
fecundability is constant over time, at least for a few months, but women differ in their fecundability.  
According to these results the population hazard would decline over time even though it’s constant for 
each woman.  This occurs because more fecund women tend to conceive first, and the survivors become 
increasingly selected for lower fecundability. 

When frailty at birth has a gamma distribution one can show that the distribution of frailty among 
survivors to age 𝑥𝑥 is also gamma with the mean given above and variance 

𝑣𝑣𝑎𝑎𝑣𝑣(𝜃𝜃|𝑋𝑋 > 𝑥𝑥) =
𝜎𝜎2

�1 + 𝜎𝜎2𝐻𝐻0(𝑥𝑥)�2
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Note that the variance at birth is 𝜎𝜎2 but over time the variance get smaller and smaller, so the 
population becomes more homogeneous. Frailty, of course, also declines. An interesting feature of 
gamma frailty is that the coefficient of variation (standard deviation over mean) remains constant. 

The Inversion Formula 

So far we have gone from individual to population hazards. Can we go the other way? The answer is yes, 
and leads to interesting applications. 

If frailty has a gamma distribution then one can show that the baseline hazard satisfies 

𝜇𝜇0(𝑡𝑡) = 𝜇𝜇(𝑥𝑥)𝑒𝑒𝜎𝜎2𝐻𝐻(𝑥𝑥) 

where 𝐻𝐻(𝑥𝑥) =  ∫ 𝜇𝜇(𝑎𝑎)𝑑𝑑𝑎𝑎𝑥𝑥
0  is the cumulative (integrated) population hazard. (The negative log of the 

population survival function with radix 1.) 

Example. We considered earlier how a gamma mixture of exponentials leads to a declining population 
hazard. I now show that a constant population hazard can be viewed as a mixture of something else.  If 
the population hazard is constant then 𝜇𝜇(𝑥𝑥) = 𝜇𝜇 and the cumulative hazard is 𝐻𝐻(𝑥𝑥) = 𝜇𝜇𝑥𝑥. Plugging 
these functions into the inversion formula we find that the baseline individual hazard is 

𝜇𝜇0(𝑥𝑥) = 𝜇𝜇𝑒𝑒𝜎𝜎2𝜇𝜇𝑥𝑥 

an exponential function of 𝑥𝑥 which we recognize as a Gompertz hazard. Thus, we have the remarkable 
result that a population that shows a constant hazard may result from individuals with gamma 
distributed heterogeneity who face hazards that increase exponentially with time. 

The Identification Problem 

You may begin to suspect that we have a bit of an identification problem here, because a flat population 
hazard could also result from a homogeneous population where each individual’s hazard is flat. All we 
can estimate is hazards for populations, or groups. It pays to be aware, however, that the hazards for 
the individuals may be different. In particular, we can’t distinguish heterogeneity from negative duration 
dependence. 

The Mortality Cross-Over 

The online computing logs illustrate these ideas with an application to U.S. mortality. We start with 
population average survival and hazard curves for blacks and whites and note the well-documented 
mortality cross-over. We then use the inversion formula to find subject-specific hazards for blacks and 
whites that do not cross, yet under heterogeneity lead to population-average hazards that do cross. The 
underlying explanation is that blacks face higher mortality at younger ages and hence become more 
highly selected at older ages. The alternative explanation is age misreporting, which may be particularly 
prominent among older blacks because of the lack of birth certificates.  
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