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Tempo Effects 
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A hot topic in Demography concerns the need to adjust period measures of fertility, nuptiality and 
mortality for so-called “tempo distortions”.  We will review quickly some of the main ideas, including 
Ryder’s demographic translation formula and the Bongaarts-Feeney tempo-adjusted measures.   

Fertility 

Imagine a surface 𝑓𝑓(𝑎𝑎, 𝑡𝑡) of fertility rates by age and period. A period summary is obtained by summing 
over ages for a fixed time. In particular, the period TFR for year 𝑡𝑡 is  

TFR(𝑡𝑡) = ∫ 𝑓𝑓(𝑎𝑎, 𝑡𝑡)𝑑𝑑𝑑𝑑 

It is also useful to define the mean age 𝜇𝜇𝑝𝑝(𝑡𝑡) of the fertility schedule as  

𝜇𝜇𝑝𝑝(𝑡𝑡) = ∫ 𝑎𝑎𝑎𝑎(𝑎𝑎, 𝑡𝑡)𝑑𝑑𝑑𝑑/TFR𝑝𝑝(𝑡𝑡) 

Cohort summaries are obtained by summing across a diagonal, where age and time vary together. In 
particular, the cohort TFR for the cohort born in year 𝑡𝑡 is  

TFR𝑐𝑐(𝑡𝑡) = ∫ 𝑓𝑓(𝑎𝑎, 𝑡𝑡 + 𝑎𝑎)𝑑𝑑𝑑𝑑 

and the cohort mean age of childbearing is  

𝜇𝜇𝑐𝑐(𝑡𝑡) = ∫ 𝑎𝑎𝑎𝑎(𝑎𝑎, 𝑡𝑡 + 𝑎𝑎)𝑑𝑑𝑑𝑑/TFR𝑐𝑐(𝑡𝑡) 

Ryder 

Ryder’s chief concern was that period summaries provide a distorted view of the behavior of cohorts 
when fertility is changing. In particular, if women delay childbearing the period TFR will drop even if the 
cohorts have the same number of children as before, so the cohort TFR stays constant. Thus, a cohort 
change in tempo would look from the period perspective as a change in the quantum of fertility! 

 The following artificial example may help fix ideas. Consider cohorts having children in three age groups 
as follows: 

 3.0 3.0 3.0 3.0 3.0 3.0 ←Cohort TFR 
35-44 0.6 0.6 0.6 0.7 0.8 0.8  
25-34 1.6 1.6 1.7 1.8 1.8 1.8  
15-24 0.8 0.6 0.4 0.4 0.4 0.4  
Period TFR→ 3.0 2.8 2.7 2.9 3.0 3.0  
        

Initially cohorts have an average of 0.8, 1.6 and 0.6 births in each age group, for a total of three children.  
But then a cohort delays childbearing and has 0.6, 1.7 and 0.7 birth per age group, for a total of three.  
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Subsequent cohorts further delay childbearing and have 0.4, 1.8 and 0.8 in each age group, for a total of 
three.  The cohort TFR is always 3.0. But as shown in the table the period TFR drops from 3.0 to 2.8 and 
2.7 before it recovers to 2.9 and bounces back to 3.0.  A more accurate cohort-to-period conversion 
would use Lexis triangles, but the simple calculation shown here suffices to show that a cohort change in 
tempo appears as a period change in quantum! 

Ryder used a first order Taylor series expansion to relate period and cohort TFRs. He showed that for the 
cohort that reaches its mean childbearing age 𝜇𝜇 at time 𝑡𝑡 (the cohort born at 𝑡𝑡 − 𝜇𝜇)   

TFR𝑐𝑐(𝑡𝑡 − 𝜇𝜇) ≈
TFR𝑝𝑝(𝑡𝑡)

1 − 𝑟𝑟𝑐𝑐(𝑡𝑡 − 𝜇𝜇)
 

where  𝑟𝑟𝑐𝑐(𝑡𝑡 − 𝜇𝜇)  is rate of change or time derivative of cohort mean age of childbearing for the cohort 
reaching it mean childbearing age at time 𝑡𝑡. This remarkable formula shows that, to a first order of 
approximation, if cohorts postpone childbearing the period TFR will fall below the cohort TFR by an 
amount that depends on how fast the mean age of childbearing was increasing. This actually happened 
during the baby boom, as you can see in the computing logs.  

Bongaarts-Feeney 

In 1998 Bongaarts and Feeney proposed a tempo-adjusted total fertility rate, usually denoted TFR∗, 
based on an expression that looks remarkably like Ryder’s translation formula  

TFR∗(𝑡𝑡) =
TFR(𝑡𝑡)

1 − 𝑟𝑟𝑝𝑝(𝑡𝑡)
 

There are, however, a few important differences. First, 𝑟𝑟𝑝𝑝(𝑡𝑡) is the rate of change or time derivative of 
the period mean age of childbearing at time 𝑡𝑡. This is much easier to calculate from available data. It is 
usually estimated by averaging the “in and out” changes between 𝑡𝑡 − 1  and 𝑡𝑡 and between 𝑡𝑡 and 𝑡𝑡 + 1 . 
This turns out to be exactly the same as half the change beween 𝑡𝑡 − 1 and 𝑡𝑡 + 1. 

Second, TFR∗ is not a cohort rate, but rather a pure-period measure representing tempo-corrected 
fertility. This raises issues of interpretation that we discuss below. 

 A third difference is that B-F recommend applying the procedure separately by birth order, using rates 
that divide births of a given order by all women. The reasoning behind this approach is that as women 
have fewer high-order births the overall mean age of childbearing will decline without any changes in 
the timing of earlier births, so order-specific means provide a better measure of tempo changes. In my 
own opinion, order-specific fertility is best analyzed using true hazard rates, a point made by van Imhoff 
and Keilman in comments to the original B-F paper. 

There has been a lot of discussion of TFR∗ and some confusion about its meaning. B-F argue that they 
are not trying to estimate the TFR for any particular cohort and that TFR∗ is just a “period measure 
purged of tempo distortions”. The best way to think about this is as a counterfactual estimate of what 
the period TFR would be if women were not delaying childbearing. Zeng and Lang show that it can also 
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be interpreted at the TFR that would be observed if women followed a period schedule that is shifting 
constantly to older ages. A simple derivation of these results may be found in my tempo paper, which 
also provides a result for the mean age of childbearing under the implied period-shift model, which is 
shown as equivalent to an accelerated failure time model of cohort behavior.  

The online computing logs show an application of these ideas to U.S. fertility using the Heuser cohort 
fertility tables. For a much more detailed analysis see the paper by Schoen in Demography in 2004. 

Nuptiality 

The same phenomenon we have noted with fertility can happened with nuptiality. If women postpone 
first marriage, then period estimates of the proportion who eventually marries will decline even if the 
same fraction of each cohort ends up marrying. Thus, a cohort change in tempo can masquerade as a 
change in period quantum.  

Bongaarts and Feeney apply their procedure working with period marriage frequencies, obtained by 
dividing first marriages by the total number of women in an age group (not just those single). They 
accumulate these frequencies to obtain a Total First Marriage rate (TFMR), and also use them to 
calculate a period Mean Age at Marriage. They then define a tempo‐adjusted TFMR as 

TFMR∗ =
TFMR(𝑡𝑡)
1 − 𝑟𝑟𝑝𝑝(𝑡𝑡)

 

where 𝑟𝑟𝑝𝑝(𝑡𝑡) is the rate of change or time derivative of period mean age at first marriage. The procedure 
is formally identical to the adjustment used for fertility.   

Note that this approach relies on frequencies rather than true event‐exposure rates, and this causes 
some technical difficulties. If 60% of a cohort marries before age A, and 60% of the next cohort marries 
after age A, and we combine these frequencies, we would get a synthetic cohort where 120% marry! 
This couldn’t happen with hazard rates, but the model is predicated on a shift of the period schedule of 
frequencies (or equivalently, cumulative proportions married). 

The approach also assumes that women postpone first marriage by the same amount of time at all ages. 
If we observe fewer women marrying in a given year it could be because some will marry later and/or 
because some will forego marriage, and it is hard to determine the relative weight of these two 
explanations. Bongaarts and Feeney can separate the two effects by assuming a uniform delay at all 
ages. The quality of the adjustment depends on the validity of this assumption. 

Mortality 

In a more recent series of papers Bongaarts and Feeney extended their proposed tempo adjustment to 
mortality. They claim that conventional period life expectancy is a biased measure of longevity when 
mortality is declining, with a bias of up to 2 years in developed countries. Needless to say, they created 
quite a stir in the demographic community. With fertility (and nuptiality) we could all understand the 
risk of confusing changes in quantum and tempo, but with mortality the quantum is fixed, only tempo 
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can change, and no one would mistake one for the other. In other words if mortality rates decline, we 
know it is because people are delaying death. 

B‐F claim, however, that period measures of mortality suffer from the same “tempo distortions” as 
period measures of fertility, and propose an adjustment based on an estimate of the rate at which 
mortality is declining. To motivate the need for adjustment they use an example along the following 
lines. Suppose in a given year we all took a pill that made us immune to death (and aging) for three 
months. Clearly such a pill would add exactly three months to our life. Yet the death rates for that year 
would decline 25%, and in a country such as the U.S. in 2002 period life expectancy would rise by about 
3.6 years, overestimating the gain in longevity. 

We should remember, however, that conventional life expectancy is a counterfactual estimate of how 
long we would live if the rates observed in a given year remained in effect through our lives. Effectively 
that assumes that we would get a magic pill every year, in which case we would indeed live quite a bit 
longer. However, the example serves to illustrate a key feature of the B‐F approach, the assumption that 
adult mortality declines because we all receive “increments to life”, not because “rates decline”. The 
underlying model is formally identical to the model for fertility and nuptiality, assuming a uniform shift 
in the survival curve to older ages. This is not realistic for the youngest ages, but Bongaarts and Feeney 
restrict their discussion of tempo effects in mortality to adult ages, say above age 25 or 30.  

The gist of the method relies on death frequencies, computed by dividing deaths in an age group by the 
original size of the cohort (not just those alive). Accumulating these leads to the Total Mortality Rate 
(TMR). The rate of change or time derivative of the TMR is used to compute an adjustment factor, that is 
then used to inflate the age‐specific mortality rates before calculating life expectancy. The result is the 
B-F tempo-adjusted life expectancy.  Other interesting measures that come up are the cohort average 
length of life (CAL), and the standardized mean age at death; in addition, of course, to conventional life 
expectancy. 

We will not discuss these further, as the dust has not settled. The book How long do we live? edited by 
Barbi, Bongaarts and Vaupel, has a collection of papers giving different views on this issue, including my 
own. It turns out that when adult mortality follows a Gompertz model it is impossible to distinguish a 
period shift to older ages from a proportionate decline in rates at every age. However, the two models—
“reduction in rates” as opposed to “increments to life”—have different implications for the future, with 
the latter implying that if gains in longevity were to stop age‐specific mortality rates would rise. 

Conclusion 

Everyone agrees that tempo effects exist. Mortality is a pure tempo phenomenon, as death is bound to 
occur and the only question is when. Things are different with fertility and nuptiality because the event 
in question may or may not occur. Under these circumstances a period change in quantum may reflect a 
change in cohort quantum, a change in cohort tempo, or an unknown mixture of the two. Distinguishing 
the two while the cohorts are still “making up their minds” is a tall order. The B‐F adjustment removes 
the tempo component of the change under a model that assumes a uniform delay at all ages. Whether 
this adjustment is meaningful in the case of mortality remains a hotly debated issue. 
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