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Stable Populations 
POP 502 / ECO 572/ SOC 532  • SPRING 2017 

 A closed population subject to constant age-specific birth and death rates eventually becomes stable, 
with a constant growth rate and a constant age-distribution. We have already encountered the idea of a 
stationary population, where death rates are constant and there is a steady stream of births. In a stable 
population the birth stream growths exponentially over time.  We review briefly some of the main ideas, 
focusing on the standard female dominant model. The textbook has an excellent discussion in Chapter 7. 

The Renewal Equation 

Let 𝐵𝐵(𝑡𝑡) denote the number of female births at time 𝑡𝑡, and let 𝑁𝑁(𝑎𝑎, 𝑡𝑡) be the number of women age 𝑎𝑎 
at time 𝑡𝑡. (These are both densities, so strictly speaking the number of births in a short interval of time is 
the product of 𝐵𝐵(𝑡𝑡) times the width of the interval.) Suppose that starting at time zero the age-specific 
birth and death rates become constant.  

Let 𝑚𝑚(𝑎𝑎) denote the maternity function at any time after zero. If the reproductive span runs from ages 
𝛼𝛼 to 𝛽𝛽 the number of births at time 𝑡𝑡 is 

𝐵𝐵(𝑡𝑡) = � 𝑁𝑁(𝑎𝑎, 𝑡𝑡)𝑚𝑚(𝑎𝑎)𝑑𝑑𝑎𝑎
𝛽𝛽

𝛼𝛼
, 𝑡𝑡 > 0 

Between time zero and 𝛼𝛼 the only women having children were already born at time zero, so they are 
products of whatever fertility and mortality regimes existed before. Between time 𝛼𝛼 and  𝛽𝛽 we have a 
mix of old timers and women who have been born in the new regime. But when we reach time β and 
beyond, all women in the reproductive ages have been born in the new regime; they are the product of 
the fertility and mortality schedules in the model.  

Consider then 𝑁𝑁(𝑎𝑎, 𝑡𝑡), the number of women aged 𝑎𝑎 at time 𝑡𝑡 for 𝑡𝑡 > 𝛽𝛽. These are the survivors of the 
cohort born at time 𝑡𝑡 − 𝑎𝑎, which had initial size 𝐵𝐵(𝑡𝑡 − 𝑎𝑎).  Let 𝑝𝑝(𝑎𝑎) the probability of surviving to age 𝑎𝑎 
for someone born after time zero. We can then write  

𝑁𝑁(𝑎𝑎, 𝑡𝑡) = 𝐵𝐵(𝑡𝑡 − 𝑎𝑎)𝑝𝑝(𝑎𝑎), 𝑡𝑡 > 𝛽𝛽 

and the stream of births becomes 

𝐵𝐵(𝑡𝑡) = � 𝐵𝐵(𝑡𝑡 − 𝑎𝑎)𝑝𝑝(𝑎𝑎)𝑚𝑚(𝑎𝑎)𝑑𝑑𝑎𝑎
𝛽𝛽

𝛼𝛼
, 𝑡𝑡 > 𝛽𝛽 

This is an integral equation (an equation involving a function and its integral). We would like to solve it, 
by which we mean finding a function 𝐵𝐵(𝑡𝑡) that satisfies it. Lotka tried an exponential form, where 

𝐵𝐵(𝑡𝑡) = 𝐵𝐵𝑒𝑒𝑟𝑟𝑟𝑟, 𝑡𝑡 > 0 
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For 𝑡𝑡 > 𝛽𝛽 we can also write 𝐵𝐵(𝑡𝑡 − 𝑎𝑎) = 𝐵𝐵𝑒𝑒𝑟𝑟(𝑟𝑟−𝑎𝑎) = 𝐵𝐵𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒−𝑟𝑟𝑎𝑎. If we substitute these results into the 
integral equation and cancel 𝐵𝐵𝑒𝑒𝑟𝑟𝑟𝑟, which appears on the left and right hand sides, we get after time 𝛽𝛽  

1 = � 𝑒𝑒−𝑟𝑟𝑎𝑎𝑝𝑝(𝑎𝑎)𝑚𝑚(𝑎𝑎)𝑑𝑑𝑎𝑎
𝛽𝛽

𝛼𝛼
 

This is Lotka’s equation. Note that instead of integrating from 𝛼𝛼 to 𝛽𝛽 we can integrate from 0 to 𝑡𝑡 as the 
textbook does in equation 7.5. The integral from 0 to 𝛼𝛼 is zero, and as long as 𝑡𝑡 > 𝛽𝛽 the integral from 𝛽𝛽 
to 𝑡𝑡 is also zero because 𝑚𝑚(𝑎𝑎) is zero outside the reproductive ages, so we only need to integrate over 
the reproductive ages. The textbook uses this fact in equation 7.10. 

The next step is to see if this equation has a solution. Write 𝜌𝜌 for 𝑟𝑟 in the right-hand side and view that 
as a function of 𝜌𝜌. We’ll assume that the survival and maternity schedules are well-behaved, so the 
integral is a continuous differentiable function of 𝜌𝜌. The function is always positive and declines 
monotonically as 𝜌𝜌 increases, going from ∞ down to zero as  𝜌𝜌 goes from −∞ to +∞. This means that 
there will be a value of 𝜌𝜌 for which the function is one. This is Lotka’s 𝑟𝑟, the intrinsic growth rate. 

Estimating Lotka’s r 

Let us write the right hand side of Lotka’s equation as a function of 𝜌𝜌 

𝑓𝑓(𝜌𝜌) = � 𝑒𝑒−𝜌𝜌𝑎𝑎𝑝𝑝(𝑎𝑎)𝑚𝑚(𝑎𝑎)𝑑𝑑𝑎𝑎
𝛽𝛽

𝛼𝛼
 

We want a value of 𝜌𝜌 such that 𝑓𝑓(𝜌𝜌) = 1. The first derivative of this function w.r.t. 𝜌𝜌 is 

𝑓𝑓′(𝜌𝜌) = −� 𝑎𝑎 𝑒𝑒−𝜌𝜌𝑎𝑎𝑝𝑝(𝑎𝑎)𝑚𝑚(𝑎𝑎)𝑑𝑑𝑎𝑎
𝛽𝛽

𝛼𝛼
 

This derivative looks like a weighted mean age with weights 𝑒𝑒−𝜌𝜌𝑎𝑎𝑝𝑝(𝑎𝑎)𝑚𝑚(𝑎𝑎), except that we haven’t 
divided by the sum of the weights, which is of course 𝑓𝑓(𝜌𝜌). Let us define the mean age of childbearing 

𝐴𝐴(𝜌𝜌) =
∫ 𝑎𝑎 𝑒𝑒−𝜌𝜌𝑎𝑎𝑝𝑝(𝑎𝑎)𝑚𝑚(𝑎𝑎)𝑑𝑑𝑎𝑎𝛽𝛽
𝛼𝛼

∫ 𝑒𝑒−𝜌𝜌𝑎𝑎𝑝𝑝(𝑎𝑎)𝑚𝑚(𝑎𝑎)𝑑𝑑𝑎𝑎𝛽𝛽
𝛼𝛼

 

We can then write the derivative as 

𝑓𝑓′(𝜌𝜌) =  −𝑓𝑓(𝜌𝜌)𝐴𝐴(𝜌𝜌) 

This, by the way, shows that the function declines monotonically, as the derivative is always negative.  

Coale proposed an iterative procedure for solving this equation. The method can be justified starting 
from a Taylor series expansion of 𝑓𝑓(𝜌𝜌) around the solution, where 

𝑓𝑓(𝜌𝜌) ≈ 𝑓𝑓(𝑟𝑟) + (𝜌𝜌 − 𝑟𝑟)𝑓𝑓′(𝑟𝑟) 
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Solving for Lotka’s r we obtain 

𝑟𝑟 ≈  𝜌𝜌 −
𝑓𝑓(𝜌𝜌) − 𝑓𝑓(𝑟𝑟)

𝑓𝑓′(𝑟𝑟)   

Using the fact that 𝑓𝑓′(𝑟𝑟) = −𝐴𝐴(𝑟𝑟)𝑓𝑓(𝑟𝑟) and 𝑓𝑓(𝑟𝑟) = 1 this equation simplifies to 

𝑟𝑟 ≈ 𝜌𝜌 +
𝑓𝑓(𝜌𝜌) − 1

𝐴𝐴
  

where A is an approximation to the mean age of childbearing in the stable population, for example 27. 
This is the equation in Box 7.1 in the textbook. 

An alternative direct application of Newton’s method is to expand 𝑓𝑓(𝑟𝑟) around a trial value, so that 

𝑓𝑓(𝑟𝑟) ≈ 𝑓𝑓(𝜌𝜌) + (𝑟𝑟 −  𝜌𝜌)𝑓𝑓′(𝜌𝜌) 

Solving for 𝑟𝑟 this equation and recalling that 𝑓𝑓(𝑟𝑟) = 1 leads to 

𝑟𝑟 ≈ 𝜌𝜌 +  
1 − 𝑓𝑓(𝜌𝜌)
𝑓𝑓′(𝜌𝜌)  

The two expansions are in fact equivalent but Newton uses the exact derivative at the trial value while 
Coale approximates it using an estimate of the derivative at the solution. Using the actual derivative 
often speeds convergence but, more importantly, yields the mean age of childbearing as a by-product. 

Lotka himself used a quadratic approximation that requires no iteration but is less accurate than the 
iterative procedures. 

In practice we need to use discrete data. With age groups of width 𝑛𝑛 we will usually approximate the 
integral using midpoints and the usual survival and maternity functions, so 

𝑓𝑓(𝜌𝜌) ≈� 𝑒𝑒−𝜌𝜌�𝑥𝑥+
𝑛𝑛
2�

𝛽𝛽−𝑛𝑛

𝛼𝛼

𝐿𝐿𝑛𝑛 𝑥𝑥

𝑙𝑙0
𝐹𝐹𝑛𝑛 𝑥𝑥
𝐹𝐹 

and 𝑓𝑓′(𝜌𝜌) = −𝑓𝑓(𝜌𝜌)𝐴𝐴(𝜌𝜌), where the mean age of childbearing is estimated as 

𝐴𝐴(𝜌𝜌) ≈� �𝑥𝑥 +
𝑛𝑛
2
� 𝑒𝑒−𝜌𝜌�𝑥𝑥+

𝑛𝑛
2�

𝛽𝛽−𝑛𝑛

𝛼𝛼

𝐿𝐿𝑛𝑛 𝑥𝑥

𝑙𝑙0
𝐹𝐹𝑛𝑛 𝑥𝑥
𝐹𝐹/𝑓𝑓(𝜌𝜌) 

(In both cases we are approximating the integral inside an age group (𝑥𝑥, 𝑥𝑥 + 𝑛𝑛) by evaluating the 
integrand at the mid point (𝑥𝑥 + 𝑛𝑛/2) and multiplying by the width of the interval 𝑛𝑛. The survival ratios 

are estimated as 𝑝𝑝 �𝑥𝑥 + 𝑛𝑛
2
� = 𝐿𝐿𝑛𝑛 𝑥𝑥/𝑛𝑛𝑙𝑙0. But the two 𝑛𝑛′s cancel out, so I didn’t show them.)  

Box 7.1 in the textbook and the computing logs obtain an intrinsic 𝑟𝑟 of 0.01424 for Egypt in 1977 after 
three iterations of Coale’s method.  The alternative procedure described here gives the same result and 
as a bonus gives the mean age of childbearing in the stable population, which is 29.47 
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The Stable Equivalent Age Distribution 

Once we have an estimate of Lotka’s 𝑟𝑟 we can compute the stable age distribution. The population age 
𝑎𝑎 at time 𝑡𝑡 for sufficiently large 𝑡𝑡 (so that everyone has been born in the new regime) is 

𝑁𝑁(𝑎𝑎, 𝑡𝑡) = 𝐵𝐵(𝑡𝑡 − 𝑎𝑎)𝑝𝑝(𝑎𝑎) = 𝐵𝐵𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒−𝑟𝑟𝑎𝑎𝑝𝑝(𝑎𝑎) 

The total population at time 𝑡𝑡 can be obtained by integrating over all ages 

𝑁𝑁(𝑡𝑡) =  � 𝑁𝑁(𝑎𝑎, 𝑡𝑡)𝑑𝑑𝑎𝑎 = 𝐵𝐵𝑒𝑒𝑟𝑟𝑟𝑟∫ 𝑒𝑒−𝑟𝑟𝑎𝑎𝑝𝑝(𝑎𝑎)𝑑𝑑𝑎𝑎 
∞

0
 

The proportion of the population age 𝑎𝑎 at time 𝑡𝑡 is then  

𝑐𝑐(𝑎𝑎, 𝑡𝑡) =
𝑁𝑁(𝑎𝑎, 𝑡𝑡)
𝑁𝑁(𝑡𝑡)

=
𝑒𝑒−𝑟𝑟𝑎𝑎𝑝𝑝(𝑎𝑎)

∫ 𝑒𝑒−𝑟𝑟𝑥𝑥 𝑝𝑝(𝑥𝑥)𝑑𝑑𝑥𝑥 
 

and doesn’t depend on 𝑡𝑡, so we’ll simply write 𝑐𝑐(𝑎𝑎).  

We can simplify this a bit further if we think in terms of the instantaneous birth rate at time 𝑡𝑡, which is 
births divided by population: 

𝑏𝑏(𝑡𝑡) =
𝐵𝐵(𝑡𝑡)
𝑁𝑁(𝑡𝑡)

=
1

∫ 𝑒𝑒−𝑟𝑟𝑎𝑎𝑝𝑝(𝑎𝑎)𝑑𝑑𝑎𝑎
 

where I have cancelled 𝐵𝐵𝑒𝑒𝑟𝑟𝑟𝑟 in the numerator and denominator. The birth rate doesn’t depend on 𝑡𝑡, so I 
will now write simply 𝑏𝑏. Moreover, the denominator of 𝑏𝑏 is the same as the denominator of 𝑐𝑐(𝑎𝑎), so we 
can write 

𝑐𝑐(𝑎𝑎) = 𝑏𝑏 𝑒𝑒−𝑟𝑟𝑎𝑎𝑝𝑝(𝑎𝑎) 

When working with discrete data we employ the usual mid-point approximations, so having obtained 𝑟𝑟 
we compute 

𝑐𝑐𝑛𝑛 𝑥𝑥 = 𝑏𝑏  𝑒𝑒−𝑟𝑟�𝑥𝑥+
𝑛𝑛
2�

𝐿𝐿𝑛𝑛 𝑥𝑥

𝑙𝑙0
 

For the open-ended group one uses 𝑥𝑥 + 𝑒𝑒𝑥𝑥  as the ‘midpoint’ and 𝑇𝑇𝑥𝑥 instead of 𝐿𝐿𝑛𝑛 𝑥𝑥 to approximate the 
integral.  The birth rate is obtained as a normalizing constant such that the relative age distribution adds 
to one.  

Box 7.2 in the textbook and the online computing logs calculate Lotka’s 𝑟𝑟 and the stable age distribution 
for U.S. females in 1991 using these procedures. Very similar results can be obtained from the first 
eigenvalue and eigenvector of the Leslie matrix.  The online supplements also include a graph comparing 
the current and stable equivalent age distributions. The intrinsic growth rate is (slightly) negative, but 
the age structure is relatively young. As a result, we find that at 1991 rates the U.S. female population 
would have continued to growth for about 45 years before heading into extinction. 
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Why a Population Converges to Stability 

My favorite proof of the basic theorem of stable population theory is due to Brian Arthur. His article is 
very clear and has the great merit of revealing the mechanism involved. While his proof is in discrete 
time, the gist of the argument can be conveyed equally well in continuous time.  

Recall from page 1 that after time 𝛽𝛽 the age distribution is given by 

𝑐𝑐(𝑎𝑎, 𝑡𝑡) =
𝐵𝐵(𝑡𝑡 − 𝑎𝑎)𝑝𝑝(𝑎𝑎)

∫ 𝐵𝐵(𝑡𝑡 − 𝑥𝑥)𝑝𝑝(𝑥𝑥)𝑑𝑑𝑥𝑥𝑥𝑥
 

Arthur notes that it is sufficient to show that the birth sequence eventually becomes exponential, say 
𝐵𝐵(𝑡𝑡) → 𝐵𝐵𝑒𝑒𝑟𝑟𝑟𝑟, because if that is the case the age distribution becomes 

𝑐𝑐(𝑎𝑎, 𝑡𝑡) =
𝐵𝐵𝑒𝑒𝑟𝑟(𝑟𝑟−𝑎𝑎)𝑝𝑝(𝑎𝑎)

∫ 𝐵𝐵𝑒𝑒𝑟𝑟(𝑟𝑟−𝑥𝑥)
𝑥𝑥 𝑝𝑝(𝑥𝑥)𝑑𝑑𝑥𝑥

=
𝑒𝑒−𝑟𝑟𝑎𝑎𝑝𝑝(𝑎𝑎)

∫ 𝑒𝑒−𝑟𝑟𝑥𝑥𝑥𝑥 𝑝𝑝(𝑥𝑥)𝑑𝑑𝑥𝑥
  

as 𝐵𝐵𝑒𝑒𝑟𝑟𝑟𝑟  cancels out and we obtain an expression that doesn’t depend on 𝑡𝑡!  

The next insight comes from the observation that the birth sequence will become exponential if the 
ratio of 𝐵𝐵(𝑡𝑡) to 𝐵𝐵𝑒𝑒𝑟𝑟𝑟𝑟 becomes a constant. Dividing the left and right-hand sides of the renewal equation 
by 𝐵𝐵𝑒𝑒𝑟𝑟𝑟𝑟 we obtain 

𝐵𝐵(𝑡𝑡)
𝐵𝐵𝑒𝑒𝑟𝑟𝑟𝑟

= �
𝐵𝐵(𝑡𝑡 − 𝑎𝑎)
𝐵𝐵𝑒𝑒𝑟𝑟𝑟𝑟

𝑝𝑝(𝑎𝑎)𝑚𝑚(𝑎𝑎)𝑑𝑑𝑎𝑎
𝛽𝛽

𝛼𝛼
 

We can view the left-hand side as a growth-corrected birth sequence  𝐵𝐵�(𝑡𝑡) = 𝐵𝐵(𝑡𝑡)/𝑒𝑒𝑟𝑟𝑟𝑟. To obtain a 
similar expression on the right-hand side we multiply and divide by 𝑒𝑒−𝑟𝑟𝑎𝑎, which leads us to 

𝐵𝐵�(𝑡𝑡) = � 𝐵𝐵�(𝑡𝑡 − 𝑎𝑎)
𝛽𝛽

𝛼𝛼
𝑒𝑒−𝑟𝑟𝑎𝑎𝑝𝑝(𝑎𝑎)𝑚𝑚(𝑎𝑎)𝑑𝑑𝑎𝑎 

So far the algebra holds for any value of 𝑟𝑟, but now we pick Lotka’s 𝑟𝑟, which has the nice property that 
∫ 𝑒𝑒−𝑟𝑟𝑎𝑎𝑝𝑝(𝑎𝑎)𝑚𝑚(𝑎𝑎)𝑑𝑑𝑎𝑎 = 1.  The reason why this is important is that we can now write 

𝐵𝐵�(𝑡𝑡) = � 𝐵𝐵�(𝑡𝑡 − 𝑎𝑎)
𝛽𝛽

𝛼𝛼
𝑤𝑤(𝑎𝑎)𝑑𝑑𝑎𝑎 

where 𝑤𝑤(𝑎𝑎) represents weights that integrate to one. In other words, the growth-corrected births at 
time 𝑡𝑡 are a weighted average of the growth-corrected births in the past, where averaging is over a 
sliding window determined by the reproductive ages.   

We can view this successive averaging as a form of smoothing because 𝐵𝐵�(𝑡𝑡), being a mean, is always 
inside the range of values between 𝛼𝛼 and 𝛽𝛽 years ago (unless they are all equal and the sequence has 
already converged). As time goes by and the window shifts we discard old values in favor of averages, 
until the range inevitable collapses and the sequence converges to a constant. 
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