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Section 3.10 in the textbook considers the decomposition of a change in life expectancy in 
terms of the contribution of each age group. At issue are questions such as “How much of 
the gain in life expectancy in a recent period can be attributed to reductions in infant and 
child mortality?” We can answer the question in continuous or discrete time. The textbook 
focuses on the discrete method and gives a formula and example. We’ll briefly review both, 
focusing on expectation of life at birth. 

Pollard 
Pollard (1982) proposed a continuous-time decomposition. Recall that expectation of life at 
age 𝑎𝑎 is the ratio of time lived after age 𝑎𝑎 to the number of survivors to that age. 
Specifically, at birth we have 
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where 𝑀𝑀(𝑥𝑥) = ∫ 𝜇𝜇𝑥𝑥0 (𝑎𝑎)𝑑𝑑𝑎𝑎 is the cumulative force of mortality up to age 𝑥𝑥. The difference in 
life expectancy between two time periods (or two countries) may be written as 
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Let us factor out the initial survival 𝑒𝑒−𝑀𝑀1(𝑥𝑥) = 𝑙𝑙1(𝑥𝑥)/𝑙𝑙1(0) to obtain 
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At this point we can integrate by parts using the fact that 𝑙𝑙1(𝑥𝑥) is the derivative of 
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Pollard notes that expanding the exponential in a Taylor series and taking just the leading 
term (which is 1) leads to the "well-known" approximation 𝛥𝛥𝑒𝑒(0) ≈ 𝛥𝛥𝜇𝜇(𝑥𝑥)𝑒𝑒1(𝑥𝑥)𝑙𝑙1(𝑥𝑥)/𝑙𝑙1(0). 
In words, a small change in death rates at age 𝑥𝑥 changes life expectancy at birth by the 
expectation of life remaining at 𝑥𝑥 times the probability of surviving to that age. 

Noting that 𝑒𝑒−𝑀𝑀1(𝑥𝑥) = 𝑙𝑙1(𝑥𝑥)/𝑙𝑙1(0) we can do some cancellation to obtain the simpler 
formula 
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Which combines survival probabilities in the new regime (𝑙𝑙2(𝑥𝑥)) with life expectancy in the 
old (𝑒𝑒1(𝑥𝑥). Reversing the labels leads to an equivalent expression in terms of 𝑙𝑙1(𝑥𝑥) and 
𝑒𝑒2(𝑥𝑥). Both exact. 

This method is largely of theoretical interest because to apply it we need to evaluate the 
integrals, which requires approximations. (See Pollard's paper if you are interested.) 

Arriaga 
Arriaga (1988) proposed a discrete-time decomposition that is much easier to apply to 
conventional abridged life tables. We consider the contribution of a change in mortality 
rates at ages 𝑥𝑥 to 𝑥𝑥 + 𝑛𝑛 on life expectancy at age 𝑎𝑎 < 𝑥𝑥. We focus here on life expectancy at 
birth, so 𝑎𝑎 = 0. For consistency with the textbook I'll use superscripts for the two time 
periods or countries.     

I find that it helps follow the argument to consider the average person-years lived at ages 𝑥𝑥 
to 𝑥𝑥 + 𝑛𝑛, which Arriaga calls a "temporary" life expectancy and denotes = 𝑒𝑒𝑥𝑥𝑛𝑛 𝐿𝐿𝑥𝑥/𝑙𝑙𝑥𝑥. 
Changing mortality at ages 𝑥𝑥 to 𝑥𝑥 + 𝑛𝑛 has an affect at those ages and as we'll see, also an 
effect at later ages. 

The first component, sometimes called the direct effect, reflects the fact that in the new 
regime people spend on average 𝑒𝑒𝑥𝑥2𝑛𝑛  years at those ages instead of 𝑒𝑒𝑥𝑥1𝑛𝑛 , provided of course 
they make it to age 𝑥𝑥, so this first component is 
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This is the first part of equation (3.11) in the textbook. 

The second component reflects the fact that we now have more people coming out of the 
age group 𝑥𝑥 to 𝑥𝑥 + 𝑛𝑛. In the first regime we had 𝑙𝑙𝑥𝑥+𝑛𝑛1  exiting, but we now have 𝑙𝑙𝑥𝑥1𝑙𝑙𝑥𝑥+𝑛𝑛2 /𝑙𝑙𝑥𝑥2 
exiting. (It may help to think of the last ratio as the conditional probability of surviving 
from 𝑥𝑥 to 𝑥𝑥 + 𝑛𝑛 in the second regime.) The additional survivors represent more person-
years at later ages even if the rates at those ages don't change and still average 𝑒𝑒𝑥𝑥+𝑛𝑛1

∞  years. 
But of course the rates themselves have changed, and they will average 𝑒𝑒𝑥𝑥+𝑛𝑛2
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This is the second part of (3.11) in the textbook. 

Arriaga further splits this term into an indirect effect attributable to the additional 
survivors at old rates, and an interaction effect due to the fact that those survivors face new 
rates. We will not distinguish these, but if you are interested the indirect effect is easily 



computed using 𝑒𝑒𝑥𝑥+𝑛𝑛1
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For the last open-ended age group there is only a direct effect, computed as 
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This is expression (3.12) in the textbook, but it is really just a special case of the first 
formula above because 𝐿𝐿𝑥𝑥∞  = 𝑇𝑇𝑥𝑥 for the open-ended age group. 

If you apply these formulas to the example in the textbook make sure you use 𝐿𝐿𝑥𝑥2𝑛𝑛   and 𝑇𝑇𝑥𝑥 
as printed, because accumulating person-years by age gives slightly difference results, 
probably because of rounding. The data needed are available in file box34.dat in my 
website. 

Pollard (1988) shows that his continuous-time formulation and Arriaga's discrete-time 
analysis are exactly equivalent in the limit when one uses finer and finer age intervals, with 
Pollard's equation corresponding to the sum of Arriaga's direct, indirect and interaction 
effects. 

Keyfitz 
Keyfits considered the effects of absolute and relative changes in mortality at every age, 
and you'll find a nice writeup in Keyfitz and Caswell (2005, Section 4.3). 

They show that if the rates change from 𝜇𝜇(𝑥𝑥) to 𝜇𝜇(𝑥𝑥) + 𝛿𝛿, then the derivative of life 
expectancy w.r.t. 𝛿𝛿 evaluated at zero is −𝑥𝑥𝑒𝑒0 where 𝑥𝑥 is the mean age in the stationary 
population. For example if life expectancy is 70 and mean age is 35, reducing all rates by 
0.001 would increase life expectancy by 2.45 years. 

An alternative scenario posits a proportionate change in age-specific rates, where the force 
of mortality goes from 𝜇𝜇(𝑥𝑥) to 𝜇𝜇(𝑥𝑥)(1 + 𝛿𝛿). In this case the survival probability is raised to 
the power (1 + 𝛿𝛿), and the resulting integral is hard to evaluate except in special cases. 
They show, however, that the derivative of the log of life expectancy w.r.t. 𝛿𝛿 can be written 
approximately as the product −𝐻𝐻𝛿𝛿, where 
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is a measure knows as entropy, defined as the negative weighted average of log𝑙𝑙(𝑥𝑥)/𝑙𝑙(0) 
using 𝑙𝑙(𝑥𝑥) as the weights. If everyone lived to age 𝜔𝜔 and then died 𝑙𝑙(𝑥𝑥)/𝑙𝑙(0 would be one 
and its log zero, so 𝐻𝐻 = 0. At the other extreme, if the force of mortality is constant we have 
an exponential distribution with 𝑙𝑙(𝑥𝑥)/𝑙𝑙(0) = 𝑒𝑒−𝜇𝜇𝑥𝑥, for which 𝐻𝐻 = 1. 

The product −𝐻𝐻𝛿𝛿 estimates the relative change in life expectancy after a proportionate 
change in age-specific mortality. For U.S. females in 2013 entropy was around 0.134, so a 
ten percent decline in mortality at all ages would increase life expectancy by about 1.34% 



or 1.09 years. A quick calculation using a single year life table and reducing rates by 10% 
yields an actual increase in life expectancy of 1.41 years. 

These results are useful because they provide some insight into the relationship between 
death rates and life expectancy, but they are not terribly realistic because they apply to 
small absolute or relative changes at all ages. However, the decomposition procedures 
discussed above have very wide applicability and happen to be exact.   
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