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The Lee-Carter Model 
POP 502 / ECO 572/ SOC 532  • SPRING 2017 

We review the Lee-Carter approach to forecasting mortality. This topic is not covered in the textbook, 
but their 1992 JASA article is very clear. The most distinctive feature of their approach is the use of a 
stochastic process to model uncertainty about the future. 

The Mortality Surface 

Lee and Carter seek to summarize and age-period surface of log-mortality rates log𝑚𝑚𝑥𝑥𝑥𝑥 in terms of 
vectors 𝒂𝒂 and 𝒃𝒃 along the age dimension and 𝒌𝒌 along the time dimension such that 

log𝑚𝑚𝑥𝑥𝑥𝑥 = 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑥𝑥𝑘𝑘𝑡𝑡 + 𝑒𝑒𝑥𝑥𝑥𝑥 

with restrictions such that the 𝑏𝑏’s are normalized to sum to one and the 𝑘𝑘’s sum to zero, so the 𝑎𝑎’s are 
average log rates. 

The vector 𝒂𝒂 can be interpreted as an average age profile of mortality, the vector 𝒌𝒌 tracks mortality 
changes over time, and the vector 𝒃𝒃 determines how much each age group changes when 𝑘𝑘𝑡𝑡 changes.  
When 𝑘𝑘𝑡𝑡 is linear on time each age group changes at its own exponential rate, but this is not a 
requirement of the model. The error term reflects age-period effects not captured by the model.  

Estimation using SVD 

 Lee and Carter estimated the 𝑎𝑎’s, 𝑏𝑏’s and 𝑘𝑘’s with U.S. mortality data from 1933 to 1987 using least 
squares. Specifically, they estimate 𝒂𝒂 by averaging log-rates over time and 𝒃𝒃 and 𝒌𝒌 via a singular value 
decomposition (SVD) of the residuals, essentially a method for approximating a matrix as the product of 
two vectors. In a second step they adjusted the 𝑘𝑘’s so they predict the correct total number of deaths 
each year, but this step is not essential and I have skipped it.   

The online computing logs show that one can reproduce their calculations quite closely using data from 
the Human Mortality Database. I used the 5x1 U.S. life table for both sexes, extracting the death rates 
for the standard five-year age groups up to 85+ for the years 1933 to 1987. I used the published rates up 
to age 80-84, but for the open-ended age group 85+ I combined ages 85-89 up to 110+ using  𝑙𝑙85/𝑇𝑇85. 

 Figure 1 shows how well the model fits U.S. mortality in 1933 and 1987, the two extremes of the range, 
showing the familiar shape of mortality by age and larger relative declines at younger ages, and 
reproduces part of their figure 4.   
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Figure 2 shows the steady decline of 𝑘𝑘 over time, and reproduces part of their figure 2. (My estimates of 
𝑘𝑘 average zero for 1933-1987, but the trajectory is essentially the same as in the paper.)  
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Figure 1: Lee-Carter Fits for 1933 and 1987
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Figure 2: The Mortality Trend (k)
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The basic data used in the original paper consisted of rates up to age 85+, but Lee and Carter recognized 
that a large fraction of the U.S. population survives to age 85 (no less than 30% of both sexes combined, 
and 39% of females, in 1987), so they extended the model to older ages up to 105+. The 𝒂𝒂 extension 
was based on work by Coale and Guo, and Coale and Kisker, showing that after age 80 mortality 
increases at a linearly declining rate, rather than the constant rate in a Gompertz model. The 𝒃𝒃 schedule 
was simply kept constant after age 85. See their Table 1. These values are available on my website in a 
text file called LeeCarter.dat. 

The Time Series Model 

The second distinguishing feature of the Lee-Carter approach is that, having reduced the time dimension 
of mortality to a single index 𝑘𝑘𝑡𝑡, they use statistical time series methods to model and forecast this 
index. In their application to U.S. mortality they discovered that, except for the flu epidemic of 1918, the 
index behaves like a simple random walk with drift, where 

𝑘𝑘𝑡𝑡 = 𝑘𝑘𝑡𝑡−1 + 𝑑𝑑 + 𝑒𝑒𝑡𝑡 

where 𝑑𝑑 is the drift, estimated as −0.365, and the 𝑒𝑒𝑡𝑡 are independent error terms with variance 𝑣𝑣, 
estimated as 0.6522. Note that the 𝑘𝑘’s are not independent; it is successive differences (or innovations) 
that are independent. 

The variance of 𝑘𝑘𝑡𝑡 increases with the forecast horizon 𝑡𝑡, as you might expect. Using the law of iterated 
expectations it is easy to show that starting from a fixed value 𝑘𝑘0 at time 𝑡𝑡0, the variance of 𝑘𝑘𝑡𝑡 is  

var(kt ) = (t − t0)v. 

 This is important because it gives us the standard error of a forecast.  

Simulating the Random Walk 

Perhaps the best way to understand the stochastic nature of the projection is to do a bit of simulation. 
In the computing logs we set a 50-year horizon and generate 50 random trajectories, starting with a 
value of 𝑘𝑘0 = −11.05, which is my estimate of 𝑘𝑘1989. The results are shown in Figure 3. The key thing to 
note is how our uncertainty regarding the level of mortality increases as the projection horizon gets 

longer. (We could add a shaded area to represents the 95% confidence region 𝑘𝑘𝑡𝑡 ± 1.96�(𝑡𝑡 − 𝑡𝑡0)0.652, 
but it would barely be visible behind all the lines.) 
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Forecasting Age-Specific Mortality 

Once we have a forecast for 𝑘𝑘 we combine it with the vectors 𝒂𝒂 and 𝒃𝒃 to produce a forecast of age-
specific mortality. Figure 4 shows a forecast for 2050 using the published values of 𝒂𝒂 and 𝒃𝒃 with an 
estimated 𝑘𝑘 =  −33.3, which has a standard deviation of 5.09. (Can you reproduce these values?) The 
figure also shows a region bounded by the upper and lower 95% confidence bands.  
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Figure 3. Fifty Random Walks
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Figure 4: Forecast for 2050 with 95% 
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I tried to follow the same steps as in the original paper with one exception. Apparently Lee and Carter 
use the 𝒂𝒂 and 𝒃𝒃 schedules up to age 80‐84 and close the life table using a variant of the Coale-Guo 
method,  where the rate at 105‐109 is about 0.72 and the slope declines linearly between 80‐85 and 
105‐109. In reality the rates at 105+ are not that high, and one gets simpler and better forecasts using 
the published schedules for all ages, which is what I have done here. 
 
 If you forecast a recent year and then compare predicted and observed rates you will discover that the 
forecast is good but a bit too optimistic around ages 20 to 50. This occurs because the age pattern of 
mortality at the start of the forecast in 1989 already differed from the model values. The solution is to 
use the actual 1989 rates instead of the vector 𝒂𝒂 to reflect the age pattern and reset 𝑘𝑘 to zero while 
keeping 𝒃𝒃 unchanged. This produces much better results, as you can see from Figure 5, which compares 
the rates observed in 2013 with forecasts made as of 1989 with the average 𝒂𝒂 and jumping from the 
actual 1989 rates. At first Lee and Carter worried about giving too much weight to a single year, but 
eventually concluded that it was better to update the age‐pattern.  
 

 
 
The next step in the forecast is to construct a full life table from the age‐specific mortality rates. This can 
be done using standard techniques, so I’ll skip the details. I find that the simple assumption of a constant 
risk in each age interval works well enough for most purposes. The forecast for 2050 has an expectation 
of life of 84.3 years with 95% confidence limits of 80.7 and 87.7 (in close agreement with Table 4 in the 
paper). The Social Security Administration (SSA) has their own data and they produce forecasts that are 
usually more pessimistic than the Lee‐Carter estimates. For 2050 the SSA predicted a life expectancy of 
80.2 with lower and upper bounds of 77.9 and 83.8. These differences were already apparent at the 
time the paper was published and Lee and Carter comment on them. They express concern that the SSA 
will be unprepared for the high dependency ratios that will accompany life expectancies substantially 
above their forecasts. 
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Figure 5: Observed and Forecast for 
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