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We consider non-parametric estimation of the survival function using cohort data. 
Specifically, we assume we have observations 𝑡𝑡1, … , 𝑡𝑡𝑛𝑛 of survival times as well as 
indicators 𝑑𝑑1, … ,𝑑𝑑𝑛𝑛 that take the value 1 if the observation ended with the event of interest 
and 0 otherwise. 

One-Sample: Kaplan-Meier 

If there was no censoring the obvious estimate of the probability of surviving to 𝑡𝑡 would be 
the empirical survival function 
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or proportion alive at 𝑡𝑡. 

Kaplan-Meier extended the estimator to censored data. They focus on the distinct ordered 
event times (not counting censoring times), which I'll denote 𝑡𝑡(𝑖𝑖). Let 𝑑𝑑𝑖𝑖 denote the number 
of events at 𝑡𝑡(𝑖𝑖) and 𝑛𝑛𝑖𝑖  be the number alive, and hence at risk, just before 𝑡𝑡(𝑖𝑖). The Kaplan-
Meier or product limit estimate is then 
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Note that 𝑑𝑑𝑖𝑖/𝑛𝑛𝑖𝑖 estimates the probability of an event at 𝑡𝑡(𝑖𝑖) given the number at risk (like 
_ 𝑞𝑞𝑥𝑥𝑛𝑛 ) and one minus that or 1 − 𝑑𝑑𝑖𝑖/𝑛𝑛𝑖𝑖  is the probability of surviving that failure time 
conditional on survival up to that point, so the product is an unconditional survival 
probability up to 𝑡𝑡  (like 𝑙𝑙𝑥𝑥.) 

The estimate is a step function with discontinuities at the observed failure times. If there is 
no censoring the estimator coincides with the empirical survival function, so it is a 
generalization for censored data. 

In the website we compute Kaplan-Meier estimators for time in remission of leukemia 
patients in two groups, treated and controls. The figure below shows the estimated survival 
curves.  One group has no censoring and the estimate is just the proportion surviving to 
each duration; in the end all relapse. In the treated group we note that after 35 weeks 
almost half the patients remain in remission.  
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We can compute the standard error of the estimator using the delta method. Briefly, the 
method approximates the variance of a function of a random variable using a first-order 
Taylor series expansion, which gives 

var(𝑓𝑓(𝑋𝑋)) ≈ [𝑓𝑓ʹ(𝑋𝑋)]2var(𝑋𝑋) 

In our case 𝑆𝑆(𝑡𝑡) is a product, so we first take logs and assume independence of the 
conditional survival probabilities, so 

var(log𝑆𝑆(𝑡𝑡)) = � var
𝑖𝑖:𝑡𝑡(𝑖𝑖)≤𝑡𝑡

(log 𝑝𝑝𝑖𝑖) 

We estimate the variance of 𝑝𝑝𝑖𝑖 using the binomial formula, so var(𝑝𝑝𝑖𝑖) = 𝑝𝑝𝑖𝑖𝑞𝑞𝑖𝑖/𝑛𝑛𝑖𝑖  and then 
use the delta method to obtain 

var(log 𝑝𝑝𝑖𝑖) =
1
𝑝𝑝𝑖𝑖2

var(𝑝𝑝𝑖𝑖) =
𝑞𝑞𝑖𝑖
𝑝𝑝𝑖𝑖𝑛𝑛𝑖𝑖

 

and then apply the delta method again, this time to go from log𝑆𝑆(𝑡𝑡) to 𝑆𝑆(𝑡𝑡): 

var(𝑆𝑆(𝑡𝑡)) = [𝑆𝑆(𝑡𝑡)]2 �
𝑞𝑞𝑖𝑖
𝑝𝑝𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖:𝑡𝑡(𝑖𝑖)≤𝑡𝑡

 

 
This is known as Greenwood's formula and predates the Kaplan-Meier estimator by 32 
years! It was first proposed in the context of actuarial life tables for cancer survival in 1926. 
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Regression: Cox Proportional Hazards 

Cox proposed a general solution to the problem of doing regression analysis with survival 
data without having to make strong assumptions about the shape of the hazard or force of 
mortality. I will use the standard statistical notation to emphasize the fact that this model 
has a wide range of applications beyond mortality. 

The basic proportional hazards model assumes that 

𝜆𝜆(𝑡𝑡, 𝑥𝑥) = 𝜆𝜆0(𝑡𝑡)𝑒𝑒𝑥𝑥ʹ𝛽𝛽 

where 𝜆𝜆(𝑡𝑡, 𝑥𝑥) is the hazard at time 𝑡𝑡 for a subject with covariate values 𝑥𝑥, 𝜆𝜆0(𝑡𝑡) is a baseline 
hazard that applies to everyone at time 𝑡𝑡 and 𝑒𝑒𝑥𝑥ʹ𝛽𝛽 is a relative risk for a subject with 
covariates values 𝑥𝑥 compared to a subject with 𝑥𝑥 = 0. 

A simple example may help fix ideas. Suppose there are only two groups and 𝑥𝑥 takes the 
value 1 for one group (say, treated) and 0 for the other (say, the control group). Then the 
model says 

𝜆𝜆(𝑡𝑡, 𝑥𝑥) = �
𝜆𝜆0(𝑡𝑡), if 𝑥𝑥 = 0
𝜆𝜆0(𝑡𝑡)𝑒𝑒𝛽𝛽 , if 𝑥𝑥 = 1 

In this case 𝜆𝜆0(𝑡𝑡) denotes the risk at time 𝑡𝑡 in the control group, and 𝑒𝑒𝛽𝛽 denotes the relative 
risk in the treated group at any given time, compared to the control group at the same time. 

There are extensions of the model where the covariates may change over time, of their 
effects may be non-proportional, or both, but here we will focus on the simpler case. 

Cox did not just contribute a model but also a way to estimate it without making any 
assumptions about the shape of the underlying hazard. Like previous workers, he focuses 
on the distinct ordered failure times 𝑡𝑡(𝑖𝑖). 

Suppose first that there are no ties in the observation times, so one and only one person 
fails at 𝑡𝑡(𝑖𝑖). Let's call this person 𝑗𝑗(𝑖𝑖). Let 𝑅𝑅𝑖𝑖 denote the risk set, or indices of all subjects 
alive just before 𝑡𝑡(𝑖𝑖). The probability that the person who failed at 𝑡𝑡(𝑖𝑖) would be 𝑗𝑗(𝑖𝑖) 
conditional on the risk set is 

𝐿𝐿𝑖𝑖 =
𝜆𝜆(𝑡𝑡𝑖𝑖, 𝑥𝑥𝑗𝑗(𝑖𝑖))

∑ 𝜆𝜆𝑗𝑗∈𝑅𝑅𝑖𝑖 (𝑡𝑡𝑖𝑖, 𝑥𝑥𝑗𝑗)
 

If we write the risk as the product of the baseline risk times the relative risk, we find that 
the baseline hazard cancels out and the probability in question becomes 

𝐿𝐿𝑖𝑖 =
𝑒𝑒𝑥𝑥𝑗𝑗(𝑖𝑖)ʹ𝛽𝛽

∑ 𝑒𝑒𝑥𝑥𝑗𝑗ʹ𝛽𝛽𝑗𝑗∈𝑅𝑅𝑖𝑖

 

an expression that depends only on 𝛽𝛽. Cox proposed treating the product of these 
conditional probabilities over all distinct failure times as if it were a likelihood function, 
maximizing it to obtain an estimate of 𝛽𝛽.  
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The product is known as Cox's partial likelihood and the resulting estimator shares many of 
the optimal properties of maximum likelihood, with a small loss of efficiency compared to 
making full (and correct!) parametric assumptions. 

Calculation of the estimate is more complicated if there are tied failure times. The 
numerator is simply the product of the relative risks over the 𝑑𝑑𝑖𝑖 who fail, but in principle 
the denominator requires considering all possible ways of selecting 𝑑𝑑𝑖𝑖 failures out of 𝑛𝑛𝑖𝑖  in 
the risk set, which may not be feasible. Not surprisingly, there are several approximations. 
The simplest one is Breslow's, which takes as denominator the sum of relative risks raised 
to the power 𝑑𝑑𝑖𝑖. Efron proposed a better approximation that requires only modest 
computational effort, and can be motivated by breaking the ties. 

The website shows how to fit Cox's model to the leukemia remission data. We find a 
maximum partial likelihood estimate of -1.572 using Efron's method. Exponentiating this 
estimate we conclude that the risk of relapse is 79% lower in the treated group than in the 
controls at any duration of remission [exp(-1.572)= 0.208]. 

It is possible to obtain estimates of the baseline survival function by adapting the Kaplan-
Meier logic after fitting a Cox model to obtain an estimate of 𝛽𝛽. The logic involves using the 
relative risks as weights. The figure below overlays Cox proportional-hazard estimates on 
the Kaplan-Meier estimates we obtained earlier, showing a good fit. 

 

This is essentially Figure 1 in Cox's original paper. An alternative diagnostic plot in the log-
log scale is shown on the website 
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