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Indirect Estimation 
 POP 502 / ECO 572/ SOC 532  • SPRING 2017 

Our last topic is indirect estimation, a subject covered in Chapter 11 of the textbook and in much greater 
detail in the United Nation’s Manual X, recently updated in Tools for Demographic Estimation. We focus 
on some of the seminal contributions of Bill Brass. 

Fertility and P/F 

Let 𝑓𝑓(𝑎𝑎) denote fertility at age 𝑎𝑎 and 𝐹𝐹(𝑎𝑎) = ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑎𝑎
15  cumulative fertility up to age 𝑎𝑎. If fertility has 

been relatively constant in the recent past one could estimate 𝑓𝑓(𝑎𝑎) from age-specific fertility rates for 
the last year and 𝐹𝐹(𝑎𝑎) from questions on children ever born by age of mother, and the two sets of 
estimates should be consistent.  

Brass postulated, however, that these two sources of data are subject to different sources of error. 
Specifically, children ever born is subject to recall errors that increase with age, so 𝐹𝐹(𝑎𝑎) may be 
considered reliable only for younger ages.  On the other hand, reports of births in the past year are 
subject to time scale errors, referring to periods longer or shorter than a year; if these errors are 
independent of age then 𝑓𝑓(𝑎𝑎) will have the wrong level but the right shape.   

The basic idea of the procedure is to get the level from parity and the shape from fertility, hence the 
name P/F, usually read as “P over F”. Specifically, the method starts with mean children ever born at a 
young age, typically 20-24, as the estimate of P.  It then accumulates age-specific fertility rates up to the 
same age, for example 5 times the 15-19 rate plus 2.5 times the 20-24 rate, as the estimate of F. The 
third step is to calculate the P/F ratio and use this to inflate the age-specific fertility rates, effectively 
correcting the level while preserving the shape. 

In countries with good data, such as England and Wales in 1951, Brass finds P/F ratios very close to one. 
In Africa, however, he finds more dispersion, for example 0.8 in Guinea and 1.13 in Uganda, suggesting 
reference period errors.  

The table on the right shows an 
illustrative calculation using Brass’s 
interpolation factors to accumulate 
ASFRs (for example for the age group 
20-24 we use 2.695 instead of 2.5). 
The P/F ratio at 20-24 suggests that 
fertility is about 33% higher than 
reported, and leads to a revised TFR 
of 5.1 instead of 3.9. 

Age f k F P P/F f* 
15-19 0.021 1.345 0.028 0.038 1.345 0.028 
20-24 0.170 2.695 0.563 0.747 1.326 0.225 
25-29 0.195 2.865 1.514 1.892 1.250 0.259 
30-34 0.172 3.085 2.461 2.884 1.172 0.228 
35-39 0.124 3.200 3.187 3.560 1.117 0.164 
40-44 0.067 3.405 3.638 3.868 1.063 0.089 
45-49 0.022 4.020 3.833 3.868 1.009 0.029 

TFR 3.855   3.855     5.114 
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There are better interpolation factors to accumulate fertility up to the middle of an interval, depending 
on the ratio of the rates at 20-24 and 15-19. A variant uses P/F ratios for first births to derive a 
correction factor. An adjustment is also needed when fertility rates are based on births last year by 
current age of woman, rather than true event-exposure rates. Models may play a role here. Manual X 
uses the Coale-Trussell model, and Tools for Demographic Estimation emphasizes the use of relational 
Gompertz models, and has a worked example with average parity and period fertility rates from the 
Malawi 2008 Census. 

Schmertmann and collaborators have a nice 2013 paper in Population Studies on “Bayes plus Brass” to 
estimate total fertility for many small areas using sparse census data, with an application to 2000 
Brazilian Census data for over five thousand municipalities. Their algorithm first uses Bayesian 
techniques to smooth local age-specific rates, and then applies a variant of Brass’s P/F method that is 
robust under conditions of rapid fertility decline.  

Child Mortality from Reports of Children Surviving 

Brass proposed a method for estimating child mortality from mother’s reports of children ever born and 
children surviving, that quickly became the main source of child mortality estimates in the developing 
world.  The basic idea is to ask a mother how many children she has given birth to, and how many are 
still alive. These questions have been added in many censuses, and are usually known as “the Brass 
questions”. 

Let 𝑓𝑓(𝑎𝑎) denote fertility at age 𝑥𝑥 and 𝑝𝑝(𝑎𝑎) denote the probability of surviving from birth to age 𝑎𝑎. If a 
mother is now age 𝑎𝑎, she is expected to have had 𝐹𝐹(𝑎𝑎) = ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑎𝑎

15  children. A child born when the 
mother was age 𝑥𝑥 was born 𝑎𝑎 − 𝑥𝑥 years ago and has a probability  𝑝𝑝(𝑎𝑎 − 𝑥𝑥) of being alive today. The 
expected number of children surviving is then  

𝑆𝑆(𝑎𝑎) = � 𝑓𝑓(𝑥𝑥)𝑝𝑝(𝑎𝑎 − 𝑥𝑥)𝑑𝑑𝑥𝑥
𝑎𝑎

15
. 

By the mean value theorem, we should be able to approximate the last integral by  

𝑆𝑆(𝑎𝑎) = 𝑝𝑝(𝑎𝑎 − 𝑥𝑥∗)� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
𝑎𝑎
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where 𝑥𝑥∗ is some value between 0 and 𝑎𝑎. Under these assumptions, the ratio of children surviving to 
children ever born is 

𝑆𝑆(𝑎𝑎)
𝐹𝐹(𝑎𝑎) = 𝑝𝑝(𝑎𝑎 − 𝑥𝑥∗) 

and is a direct estimate of the life table probability of surviving to some age 𝑎𝑎 − 𝑥𝑥∗, that  depends on 
the age of the mother and the average time since her children were born. (Compare this with equation 
11.3 in the text, noting that I used 𝑎𝑎 for the age of the mother in what I think is a simpler explanation.)  



3 
 

Obviously young women must have had their children relatively recently. Brass noted that women aged 
15-19 had their children on average a year ago, so the ratio estimates 𝑝𝑝(1), the probability of surviving 
to age one. For women 20-24 it estimates 𝑝𝑝(2), and for women 30-34 it estimates 𝑝𝑝(5), see the table 
on page 228 of the textbook for more details. These values, however, need to be adjusted depending on 
the age pattern of fertility.  

Brass developed a set of correction factors using simulation. These were later revised by Sullivan and 
then by Trussell. The factors are in the form of regression coefficients that take as inputs the ratios of 
mean parities 15-19/20-24 and 20-24/25-29. The result is a correction factor that is multiplied by the 
proportion dead to yield an estimate of the appropriate 𝑞𝑞𝑛𝑛 0 for each age of mother. (See Table 11.1 in 
the textbook. Note that 𝑏𝑏𝑖𝑖 should be −.5381 at age 20-24.). 

A second problem is that the ratio of children surviving to children ever born depends on mortality 
conditions in the past. If mortality has not been constant, then estimates for older ages refer to periods 
further in the past.  

Coale and Trussell developed formulas for estimating the period to which a set of estimates refer, based 
on an assumption of linearly declining mortality. These are also in the form of regression coefficients 
that take as input the ratio of mean CEB at ages 15-19/20-24 and 20-24/25-29. The result is an estimate 
of the period to which the estimates apply. (See Table 11.2 in the textbook.) 

The table below shows calculations for the data from Zimbabwe in 1994 found in Box 11.1 in the 
textbook. The basic inputs are the mean parities and the proportions of children dead by age of mother.  

Age Parity Prop dead Child age Mort adj q(x) Ref period 
15-19 0.170 0.0560 1 1.080 0.0605 1.0 
20-24 1.100 0.0817 2 1.050 0.0858 2.3 
25-29 2.360 0.0760 3 1.001 0.0760 4.2 
30-34 3.890 0.0847 5 1.009 0.0855 6.5 
35-39 5.130 0.0935 10 1.027 0.0960 9.0 

The relevant ratios of mean parities are 0.17/1.1=0.155 and 1.1/2.365=0.465. Using these as inputs in 
the regression equation for adjusting the data for women aged 15-19 we get a correction factor of 1.08. 
Multiplying this by the proportion dead for women 15-19 we get an estimate of 𝑞𝑞1 0 = 0.0605. Plugging 
the same two ratios in the regression equation for the reference period we get 1.0, so we estimate that 
the probability of infant death was about 60 per thousand, approximately one year before the survey.  
Calculations for the other age groups proceed along the same lines. The age group 30-34 leads to an 
estimate of 𝑞𝑞5 0 = 0.0855, so under five mortality was about  86 per thousand, and we time this 
estimate around 6.5 years before the survey. 

Tools for Demographic Estimation uses data on children ever born and children surviving from the 2008 
Census of Malawi to illustrate the method, and relies on relational logits to convert estimates to 𝑞𝑞05  at 
various times in the past. 
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Adult Mortality from Data on Orphanhood 

Essentially the same logic used to estimate child mortality can be used to estimate adult mortality from 
reports of orphanhood.  Let 𝐵𝐵(𝑡𝑡) denote the birth density at time 𝑡𝑡 and 𝑝𝑝(𝑎𝑎) the probability of surviving 
to age 𝑎𝑎. The number of people age 𝑎𝑎 at time 𝑡𝑡 is 

𝑁𝑁(𝑎𝑎, 𝑡𝑡) = 𝐵𝐵(𝑡𝑡 − 𝑎𝑎)𝑝𝑝(𝑎𝑎), 

the number of births 𝑡𝑡 − 𝑎𝑎 years ago times the probability of surviving 𝑎𝑎 years.  

The probability that a person age 𝑎𝑎 at time 𝑡𝑡 will not be a maternal orphan is 𝑝𝑝𝑀𝑀(𝑎𝑎), the probability that 
a woman would survive 𝑎𝑎 years after giving birth. The density of people age 𝑎𝑎 at time 𝑡𝑡 whose mother is 
alive is then  

𝑁𝑁𝑁𝑁(𝑎𝑎, 𝑡𝑡) = 𝐵𝐵(𝑡𝑡 − 𝑎𝑎)𝑝𝑝(𝑎𝑎)𝑝𝑝𝑀𝑀(𝑎𝑎) 

 and the ratio of non-orphans to the total population age 𝑎𝑎 at time 𝑡𝑡 is  

𝑁𝑁𝑁𝑁(𝑎𝑎, 𝑡𝑡)
𝑁𝑁(𝑎𝑎, 𝑡𝑡)

= 𝑝𝑝𝑀𝑀(𝑎𝑎) 

a direct estimate of the probability that a mother would survive 𝑎𝑎 years after giving birth.  

The next question is how to relate this ratio to life table survival probabilities. The answer depends on 
the average age of mothers given the age of their offspring. To a first approximation 𝑝𝑝𝑀𝑀(𝑎𝑎) is the 
probability of surviving 𝑎𝑎 years from the mean age of childbearing 𝑀𝑀∗ to age 𝑀𝑀∗ + 𝑎𝑎 , or 𝑙𝑙𝑀𝑀∗+𝑎𝑎/𝑙𝑙𝑀𝑀∗ .  If 
mean age of childbearing was 27.5, then the proportion non-orphan among respondents 15-19 would 
estimate the probability of surviving from age 27.5 to 45 (or 27.5+17.5). 

 Just as was done for the children surviving method, Hill and Trussell developed a set of regression 
equations for converting the proportions non-orphaned by age into survival probabilities using 
simulation, based on model schedules of fertility and mortality. The equations take as input the mean 
age of mothers at childbirth, and the proportion of people in the age group whose mothers are alive. 
The survival ratios estimated range from 𝑙𝑙45/𝑙𝑙25 for the age group 15-19 to 𝑙𝑙60/𝑙𝑙25 for 30-34.  

Unfortunately, the method depends on the assumption of constant mortality and there is no reliable 
procedure to date the estimates if mortality has been declining. A potential source of bias is selectivity, 
induced by the fact that only surviving children can report their orphanhood status. For younger 
respondents there may also be an “adoption effect”, where children report the survivorship of their 
adopted rather than their biological mother. Alternative methods rely on the survival of siblings or 
spouses, but they tend to be less accurate for adult mortality. 

Tools for Demographic Estimation has an application of the orphanhood method to data from Iraq. They 
also have an extensive discussion of the impact of the HIV/AIDS on mortality estimation, with an 
illustration from Kenya. 
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The Sisterhood Estimate of Maternal Mortality 

The last indirect method we will mention estimates maternal mortality from reports of sisters. The 
following brief description borrows heavily from a note I wrote with Trussell. The textbook describes the 
procedure in more detail in section 11.3 and has an example using data from Gambia in 1987. 
 
The basic idea of the method is to take a sample of women and ask how many sisters have ever married 
and, of these, how many (if any) have died during pregnancy, childbirth or puerperium. In populations 
where sexual relations outside marriage are common, or where marriage itself is not well defined, 
inquiries can be made about sisters past menarche or past age 15; the basic idea remains the same. 
 
If the sample consists of women aged 60 or over, the simple fraction of sisters who died of maternal 
causes turns out to be an estimator of the lifetime risk of maternal mortality in the presence of other 
causes of death. If the sample includes women under 60, however, some of their sisters are still at risk 
of maternal mortality, so an inflation factor must be used to convert the fraction dead to a lifetime risk. 
Appropriate adjustment factors have been computed using standard fertility and mortality schedules. 
Estimates typically refer to mortality conditions about 12 years before the survey. 
 
A key assumption of the method is independence between the number of siblings and their survival 
probabilities, as well as independence of the mortality experiences of adult sisters. An interesting 
feature of the method is the fact that the sampling frame appears to count the experience of some 
women multiple times. In fact, an early DHS survey restricted the sampling frame so only one sister per 
household was allowed to answer the maternal mortality note. It turns out, however, that restricting the 
sampling frame introduces biases; multiple reporting is not only simpler, by not requiring linking sisters 
who may live in different households, but essential for the success of the technique.  
 
Tools for Demographic Estimation has a worked example using data from the Malawi 2004 DHS to 
estimate pregnancy-related mortality.  They note that sampling uncertainty is very large compared to 
estimates of under-5 mortality, so while estimates of levels may be useful, interpretation of differentials 
is hazardous, and any conclusions about trends should be based on estimates from two or more surveys. 
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