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Birth Intervals 
 POP 502 / ECO 572/ SOC 532  • SPRING 2017 

Birth interval analysis provides a more detailed view of the family building process than conventional 
fertility rates. We discuss briefly life table analysis of birth intervals and models of conception and birth, 
topics discussed in Section 5.4 of the textbook. 

Life Table Analysis of Birth Intervals 

Life table techniques can be used to study the progression from one parity to the next. Of interest here 
is the force of fertility, a hazard function that reflects the risk of moving to the next parity by duration 
since the last birth, and the birth function 𝐵𝐵(𝑑𝑑), or proportion who have moved to the next parity by 
duration 𝑑𝑑 since the previous birth. (This function is analogous to our old friends 𝐹𝐹(𝑎𝑎), the proportion 
married by age 𝑎𝑎, and 1 − 𝑙𝑙(𝑥𝑥)/𝑙𝑙(0), the complement of the survival function.) The proportion who 
eventually move on is called the parity progression ratio. The average time it takes to move is the length 
of the birth interval.   

 Hobcraft and I did an illustrative analysis of birth intervals using data from the Colombian World Fertility 
Survey. The figures below show the birth and hazard functions for the transition from second to third 
birth by childhood type of place of residence, for women who had a second birth in the ten years 
preceding the survey.  (The original paper used all births, so results are slightly different.)  

 

The birth function shows that women who grew up in cities are less likely to make the transition to a 
third birth than those who grew up in towns or rural areas.  The hazards functions are noisier, as you 
might expect, but smoothing shows a typical pattern where the hazard rises quickly to reach a maximum 
after one or two year and then declines. The rise is due to women coming out of the post-partum non-
susceptible period, and the decline can be attributed to fertility control and/or selectivity.  
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Most women who make the transition to the next parity do so within five years, so one can summarize 
the quantum of fertility using the birth function at five years, and the tempo using the mean birth 
interval for those who make the transition within five years.  As 
shown in the summary table on the right, women who grew up in 
rural areas have much higher parity progression ratios than those 
who grew up in towns or cities. They also have the shortest birth 
intervals, but the relationship between interval length and 
childhood residence is not monotonic, as women who grew up in towns have the longest intervals.  

The first birth interval is different from the others because it doesn’t start with a birth. Traditionally 
demographers have studied the transition from first marriage to first birth, but this is fraught with 
difficulties because of premarital births. Ideally one would want a better marker of the start of exposure, 
but the necessary data are rarely available. A better strategy is to think directly in terms of entry into 
motherhood. The Coale-McNeil model of age at first marriage has been used successfully to model age 
at first birth. Birth intervals, like fertility rates, can be based on period or cohort data, with a synthetic 
cohort interpretation in the latter case.  Cohorts can be defined by year of birth, year of entry into 
motherhood, or the year in which a specific parity is reached.  

A side note: in life table analysis of birth intervals we compute rates dividing the number of births of a 
given order (say second births) by women in the previous parity (those with one birth), who are of 
course the only ones at risk of making that particular transition (to a second birth). We also index the 
process by duration since previous birth. Sometimes analysts compute order-specific fertility rates by 
age, dividing births of a given order to women in an age group by all women in the age group, regardless 
of parity. These rates are then summed to obtain order-specific TFRs, which are then interpreted as 
synthetic parity progression ratios. The age-order specific rates have the nice property that they add up 
to the overall ASFR, but they are not true event-exposure rates. (Clearly women with three children are 
not exposed to have a second child.) This is the same distinction we encountered before in terms of 
marriage frequencies and marriage rates, or between death densities and hazards.   

Models of Conception and Birth 

There is a long tradition of work on mathematical models of conception and birth by Sheps, Menken, 
Potter, Bongaarts, and others; and some of this work is reviewed in Section 5.4 in the textbook. Here we 
set aside issues of unobserved heterogeneity to focus on a few key ideas that will be useful later.  

A typical birth interval has three components, a non-susceptible period that ends with the resumption of 
ovulation, a waiting time that ends with conception, and a gestation period that ends with the next 
birth. The first interval is different in that it doesn’t start with a non-susceptible period. The figure below 
shows these components starting with the waiting time to conception. 

Residence Quantum Tempo 
Rural 82.3 19.64 
Town 79.3 22.06 
City 67.7 20.24 
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In a homogeneous population with constant fecundability 𝜌𝜌 the waiting time to conception is 1/𝜌𝜌. (This 
is a standard result for Bernoulli trials.) If 𝜌𝜌 = 0.2 it would take an average of 5 months to conceive, and 
adding a typical gestation period of 9 months would lead to a first birth interval of 14 months. The 
length of the non-susceptible period depends on such practices as post-partum abstinence and the 
length of breastfeeding. If this phase lasts 𝑖𝑖 months, then subsequent birth intervals would last on 
average 1/𝜌𝜌 + 9 + 𝑖𝑖 months. If 𝑖𝑖 = 7.5 months we get an average birth interval length of 21.5 months.  

So far we have ignored pregnancy losses, such as miscarriages and still births. If the probability that a 
pregnancy will not end in a live birth is 𝜔𝜔 it takes on average 𝜔𝜔/(1 −𝜔𝜔) losses before a successful live-
birth conception. (This is the same standard result as above, but counting the delay, or failures before 
the first success.)  Let 𝜆𝜆 denote the length of gestation plus the non-susceptible period following a 
pregnancy loss.  (One could separate these two segments, but I follow the textbook in considering them 
together.)  Each loss adds 1/𝜌𝜌 + 𝜆𝜆 months to the waiting time to a live-birth conception, the 1/𝜌𝜌 
months it took to conceive plus gestation and infecundity following the loss.  The total length of the 
birth interval is then 
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(Combining the two terms on 1/𝜌𝜌 yields equation 5.13 in the textbook, which uses 𝑠𝑠𝑏𝑏 and 𝑠𝑠𝜔𝜔 for the no-
susceptible periods following a birth and a loss; the latter includes gestation but the former doesn’t, so I 
prefer using different symbols.) If 20% of pregnancies are wasted, so 𝜔𝜔 = 0.2, one would average 0.25 
losses before a live birth conception. Assuming that gestation plus infecundity takes up 𝜆𝜆 = 5 months, 
each loss would add 10 months (5 to conceive and 5 for gestation and non-susceptibility). The average 
0.25 losses would then add a total of 2.5 months to the birth interval. Under these conditions, women 
would have a first birth after 16.5 months, with another birth following every 24 months.  

Birth intervals can be translated into expected number of children by calculating how many intervals fit 
into the reproductive period.  A woman who married at age 15 and had children following our simple 
model until age 45 (so her reproductive span is 360 months) would have one birth after 16.5 months 
and then (360-16.5)/24 = 14.3 more, for a total of 15.3 births. (We will encounter this number again 
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Figure 1. A Simple Model of Conception and Birth 
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later.) If she married at 25 instead she would have ‘only’ 10.3 children, and we can easily see the effect 
of delaying marriage.  

This model can also be used to estimate the effect of contraception on fertility. We say that a method 
has effectiveness 𝑒𝑒 if the monthly probability of conception 𝜌𝜌 is reduced to 𝜌𝜌(1 − 𝑒𝑒); so a 90% effective 
method reduces fecundability to 10% of what it would be otherwise. It is easy to see that the waiting 
time to conception is then 1/𝜌𝜌(1 − 𝑒𝑒) instead of 1/𝜌𝜌, so the average wait would be 1/0.02 = 50 months 
instead of 5 with 90% effective contraception.  The first birth interval would then be 72.75 months, 
subsequent birth intervals would be 80.25 months, and our mythical woman would have 4.58 births 
over 30 years. If she also waited to marry at 25 instead of 15 she would have 3.08 children.  

An interesting application of this simple model is to compute births averted by abortion. You’d think an 
abortion averts exactly one birth, but this ignores two facts: (1) a woman having an abortion would 
become susceptible much sooner than if she had carried the pregnancy to term, particularly if there is 
prolonged lactational infecundity, and (2) some of the pregnancies that are aborted would have resulted 
in a loss anyway, with the fraction depending on the timing of abortion.  Under the assumptions used so 
far and with no contraception, an abortion adds 10 months to the birth interval (5 to conceive and 5 in 
gestation and infecundity), so it prevents 10/24=0.435 births. Using 90% effective contraception an 
abortion increases the birth interval from 80.25 to 135.25 months, thus preventing 55/80.25 = 0.685 
births.  

The textbook notes that an abortion effectively prevents one birth when contraception is very effective 
and the waiting time to conception dominates the birth interval, but this is only true if there are no 
other pregnancy losses. Equation 5.15 effectively assumes that abortions occur very early, so a fraction 
𝜔𝜔 are redundant and the best you can do is avert 1 −𝜔𝜔 births.  A more realistic model would distinguish 
early and late losses and allow for the timing of abortion.  A simple solution is to add a delay for 
recognized losses before the decision to abort of the form (1/𝜌𝜌 + 𝜆𝜆𝑒𝑒)𝜔𝜔𝑒𝑒/(1 −𝜔𝜔𝑒𝑒)  where 𝜆𝜆𝑒𝑒 is the 
gestation and infecundity associated with an early loss (say 4 months) and 𝜔𝜔𝑒𝑒 is the probability of an 
early loss (say 0.12 instead of 0.20). This increases the length of an interval with 90% effective 
contraception from 80.25 to 142.61 and averts 0.777 births. (With 99% effective contraception the 
original model gives 0.785 and adding an allowance for losses 0.893.)  

These calculations are extremely simplistic because they ignore age effects and heterogeneity across 
women, but they have the advantage that they can be carried out ‘on the back on an envelope’. More 
realistic models require simulation.  Potter has looked at births averted when abortion is added to 
contraception using data from Taiwan and a simulation model called ACCOFERT, which has the added 
advantage of letting some of the parameters vary with age.  He concludes that “if abortions are being 
performed in the third month of pregnancy upon 30-year-old women who are regularly practicing 98 
percent effective contraception, the mean number of births averted per operation is 0.85; but if the 
same women are not practicing contraception at all, births averted per abortion average only 0.45.”  
Another simulation model you may find interesting is SOCSIM, developed by Hammer and Watcher. 
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